Scrambling for Dollars

Beijing University Presentation

by Bianchi (MPLS FED) Bigio (UCLA) Engel (UW) on April 8, 2023

Intro

UIP Deviation

UIP Deviation

* Why relevant?

 $* \ \mathcal{L} > 0$ and increases in global recession

UIP Deviation

* Why relevant?

- $* \ \mathcal{L} > 0$ and increases in global recession
- * \mathcal{L} varies with MP | Fama FX puzzle
 - * Alvarez-Atkeson-Kehoe

UIP Deviation

* Why relevant?

- $* \ \mathcal{L} > 0$ and increases in global recession
- * \mathcal{L} varies with MP | Fama FX puzzle
 - * Alvarez-Atkeson-Kehoe
- * FX disconnect
 - * Gabaix-Maggiori | Itshoki-Muhkin

UIP Deviation

* Why relevant?

- $* \ \mathcal{L} > 0$ and increases in global recession
- * \mathcal{L} varies with MP | Fama FX puzzle
 - * Alvarez-Atkeson-Kehoe
- * FX disconnect
 - * Gabaix-Maggiori | Itshoki-Muhkin
- * ...but what's behind \mathcal{L} ?

> Contribution

* Literature: time-varying risk premium

- * habits: Verdelhan 2010
- * long-run risk: Colacito & Croce 2013
- * tail risk: Farhi & Gabaix 2016

> Contribution

Literature: time-varying risk premium

- * habits: Verdelhan 2010
- * long-run risk: Colacito & Croce 2013
- * tail risk: Farhi & Gabaix 2016

* Literature: financial frictions

- \ast segmented markets: Alavarez, Atkeson, Kehoe 2009 | Itskhoki & Mukhin 2019
- * limited capital: Gabaix & Maggiori 2015 | Amador-Bianchi-Bocola-Perri 2019

> Contribution

Literature: time-varying risk premium

- * habits: Verdelhan 2010
- * long-run risk: Colacito & Croce 2013
- * tail risk: Farhi & Gabaix 2016

k Literature: financial frictions

- * segmented markets: Alavarez, Atkeson, Kehoe 2009 | Itskhoki & Mukhin 2019
- * limited capital: Gabaix & Maggiori 2015 | Amador-Bianchi-Bocola-Perri 2019

* Paper: settlement frictions

- * \$ deposits are international medium of exchange
 - * settlements frictions
- * \$ reserve assets ease settlement friction
 - $\ast~$ "scramble for dollars" rather than "flight to safety"

- \star Daily creation of \$ deposits globally
 - * Dollar liability in non-US bank (Euro-Dollar deposit) (US deposits)

- \star Daily creation of \$ deposits globally
 - * Dollar liability in non-US bank (Euro-Dollar deposit) (US deposits)
- * Circulation of Euro-Dollar (joint liability)
 - $\ast~$ Indispensable for int trade, goods and assets
 - * payment system (SWIFT, CLS) (CHIPS, FEDWIRE)

- \star Daily creation of \$ deposits globally
 - * Dollar liability in non-US bank (Euro-Dollar deposit) (US deposits)
- * Circulation of Euro-Dollar (joint liability)
 - $\ast~$ Indispensable for int trade, goods and assets
 - * payment system (SWIFT, CLS) (CHIPS, FEDWIRE)
- ★ International Settlements:
 - \ast need settlement assets
 - * clearing ("Nostro" account @ correpondant) (Fed account)

- \star Daily creation of \$ deposits globally
 - * Dollar liability in non-US bank (Euro-Dollar deposit) (US deposits)
- * Circulation of Euro-Dollar (joint liability)
 - $\ast~$ Indispensable for int trade, goods and assets
 - * payment system (SWIFT, CLS) (CHIPS, FEDWIRE)
- ★ International Settlements:
 - * need settlement assets
 - * clearing ("Nostro" account @ correpondant) (Fed account)
- * Potential \$ settlement deficit
 - * Interbank market (LIBOR) (Fed Funds)
 - * Tap deficit w/ (credit line @ correpondant) (Fed discount window)

> Main Feature | UIP and FX

Deviations from UIP

$$\mathcal{L}\underbrace{(\boldsymbol{\mu}, \boldsymbol{\mu}^{*}, \Theta)}_{\$ \text{ LP}} = \mathbb{E}\left[\frac{1+i^{m}}{1+\pi}\right] - \mathbb{E}\left[\frac{1+i^{*,m}}{1+\pi} \cdot \frac{e^{\prime}}{e}\right]$$

- $\mu = \in$ reserve asset $/ \in$ deposit ratio
- μ^* = \$ reserve asset/ \$ deposit ratio
- Θ = transactions, technology, policy shocks

* \mathcal{L} : encodes frictions

> Talk

\star Evidence

- * financial sector μ correlates w/ e
- * dispersion in interbank rates correlate w/ e

> Talk

\star Evidence

- * financial sector μ correlates w/ e
- * dispersion in interbank rates correlate w/ e

★ Theory:

- * principle: interbank market unsecured
- * frictions \Rrightarrow deviations UIP \Rrightarrow FX determination

\star Fit regressions with shocks to:

- * payment (volatility)
- \ast US interest rate shocks

Empirical Evidence

> Empirical Result: \mathcal{L} and Fed Funds dispersion

Exchange rates

- * G10 currencies, 2001:m1- 2018:m1
- * Regression:
 - * Δe vs. inflation differentials
 - Dollar Liquidity Ratio

$$\mu^* \equiv rac{\mathsf{liquid assets}}{\mathsf{short-term funds}}$$

*~+ bank liquid-asset/short-term fund ratio:

Liquid Assets \equiv Reserves + US Treasury

and

Short-Term Fund \equiv Demand Desposits + Fin. Commercial Paper

> Empirical Result: \mathcal{L} and Fed Funds dispersion

\$ Liquidity Ratio

> Empirical Result: \mathcal{L} and Liquidity Ratio

* Baseline regression

 $\Delta e_t = \alpha + \beta_1 \times \Delta \left(\mu_t^* \right) + \beta_2 (\pi_t - \pi_t^*) + \beta_3 \mu_{t-1} + \epsilon_t$

where

$$\mu^* \equiv \frac{\text{liquid assets}}{\text{short-term funds}}$$

BASELINE REGRESSION

	EU	AU	CA	YL	NZ	NK	SK	SW	UK
$\Delta\left(\mu_{t} ight)$									
$\pi_t - \pi_t^*$	-0.54***	-0.42**	-0.41*	0.01	-0.71***	-0.11	-0.49**	-0.67***	-0.39**
μ_{t-1}	0.01**	0.01	0.01	0.00	0.01	0.01*	0.01	0.01	0.01*
cons	-0.01***	-0.00	-0.01*	-0.00	-0.01**	-0.01*	-0.01**	-0.02***	-0.01
N	234	232	234	234	232	234	234	234	234
adj. R^2	0.11	0.05	0.03	0.03	0.10	0.03	0.05	0.04	0.04

t statistics in parentheses.

* p < 0.1, ** p < 0.05, *** p < 0.01

> Remarks

* Regressions

* quantity variable: not return vs. return

> Remarks

* Regressions

- * quantity variable: not return vs. return
- * Threats:
 - * Liquidity Ratio is endogenous (demand vs. supply)
 - * supply of assets: depreciates FX
 - * demand shocks: appreciate FX
 - but supply responds endogenously
 - * correlation with Risk Premia
 - \ast breaking of sample, QE out

> Remarks

* Instrumental Variable Approach

 $\hat{\mu}^{*} = \alpha + \beta_{1}^{o} \Delta \left(\sigma_{t} \right) + \epsilon_{t}$

 $\sigma_t \equiv \mathsf{US}\ \mathsf{LIBOR} \mid \mathsf{Average}\ \mathsf{Monthly}\ \mathsf{Min}\text{-}\mathsf{Max}\ \mathsf{Traded}$

* Why?

- * our theory builds on frictions in interbank market (OTC)
- * when frictions aggravate: dispersion increases
- \ast correlates with greater demand

> Empirical Result: \mathcal{L} and Settlement Frictions

* Second stage IV:

 $\Delta e_t = \alpha + \beta_1 \hat{\mu}^* + \beta_2 (\pi_t - \pi_t^*) + \epsilon_t$

BASELINE REGRESSION

	Euro	AU	CAN	JPN	NZ	NWY	SWE	СН	U.K.
$\hat{\mu}^*$	0.18			-0.22*				-0.08	
$\pi_t - \pi_t^*$	-0.52**	-0.45**	-0.31*	-0.04	-0.74***	-0.06	-0.39**	-0.31	-0.31*
μ_{t-1}^*	0.01	0.01*	0.01**	0.01	0.01	0.01**	0.01	0.01	0.01
ΔVIX_t									
Constant	0.01	0.01	0.01*	0.01	0.01	0.02*	0.01	-0.00	0.01
N	245	245	245	245	245	245	245	245	245

t statistics in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Dynamic Two-Currency World

> Features

- * Open-economy model version of Bianchi-Bigio (2021)
 - * stochastic GE, infinite horizon, discrete time
 - * 2-country: Euro | US (foreign)

> Features

- * Open-economy model version of Bianchi-Bigio (2021)
 - * stochastic GE, infinite horizon, discrete time
 - * 2-country: Euro | US (foreign)
- * Action: "global banks"
 - * assets: b real loans | m reserves in \$ and \in
 - * liabilities: d liabilities in \$ and \in
 - * payment shocks | settlement friction

> Features

- * Open-economy model version of Bianchi-Bigio (2021)
 - * stochastic GE, infinite horizon, discrete time
 - * 2-country: Euro | US (foreign)
- * Action: "global banks"
 - * assets: b real loans | m reserves in \$ and \in
 - * liabilities: d liabilities in \$ and \in
 - * payment shocks | settlement friction
- * Static Demand System by design:
 - * static loan demand and deposit supply
 - * firms: working capital loans
 - * consumers: | work | CIA in two currencies | risk neutral
 - * risk neutral + quasi-linear: static central bank
- * Central bank
 - * set policy rates | reserve supply | transfers
- * Aggregate shocks
 - * payment volatility
 - * policy

> Environment

- * Time: t, discrete, infinite horizon
- * X_t vector aggregate shocks

> Environment

- * Time: t, discrete, infinite horizon
- * X_t vector aggregate shocks
- * P_t denominated in €, P^{*}_t denominated in \$
 * dollar denominated
- * One good (LOP)

$$P_t = P_t^* e_t$$

* Real Expected Returns:

$$R^{\mathsf{x}} = \mathbb{E}\left[\frac{1+i^{\mathsf{x}}}{1+\pi}\right], \ R^{\mathsf{*},\mathsf{x}} = \mathbb{E}\left[\frac{1+i^{\mathsf{*},\mathsf{x}}}{1+\pi^{\mathsf{*}}}\right]$$

* Bank maximizes:

$$\mathbf{v}(\mathbf{n}, \mathbf{X}) = \max_{\{\mathbf{b}, \mathbf{m}^*, \mathbf{d}^*, \mathbf{d}, \mathbf{m}\} \ge 0} Di\mathbf{v} + \beta \mathbb{E}\left[\mathbf{v}\left(\mathbf{n}', \mathbf{X}'\right) | \mathbf{X}\right]$$

w/ budget

$$Div+b+m^*+m=n+d+d^*$$

* Bank maximizes:

$$\mathbf{v}(\mathbf{n}, \mathbf{X}) = \max_{\{\mathbf{b}, \mathbf{m}^*, \mathbf{d}^*, \mathbf{d}, \mathbf{m}\} \ge 0} Di\mathbf{v} + \beta \mathbb{E}\left[\mathbf{v}\left(\mathbf{n}', \mathbf{X}'\right) | \mathbf{X}\right]$$

w/ budget

$$Div+b + m^* + m = n + d + d^*$$

* No equity frictions so:

 $v(\overline{n,X}) = \overline{n}.$

* Expected net-worth:

$$\mathbb{E}\left[n'|X\right] = \underbrace{R^{b}b + R^{m}m + R^{m,*}m^{*} - R^{d}d - R^{*,d}d^{*}}_{p}$$

Expected Portfolio Returns

* Expected net-worth:

$$\mathbb{E}\left[n'|X\right] = \underbrace{R^{b}b + R^{m}m + R^{m,*}m^{*} - R^{d}d - R^{*,d}d^{*}}_{\mathbf{A}}$$

Expected Portfolio Returns

* Without frictions

$$\frac{1}{\beta} = R^{b} = R^{m} = R^{m,*} = R^{d} = R^{*,d}$$

and

 $\mathcal{L} = 0$

> Bank's Problem w/ Settlement Frictions

* Net-worth

$$\mathbb{E}\left[n'|X\right] = \underbrace{R^{b}b + R^{m}m + R^{m,*}m^{*} - R^{d}d - R^{*,d}d^{*}}_{p}$$

Expected Portfolio Returns

+
$$\underbrace{\mathbb{E}\left[\chi^*(s^*|\theta^*)\right] + \mathbb{E}\left[\chi(s|\theta)\right]}_{\text{Expected Settlement Costs}}$$

> Bank's Problem w/ Settlement Frictions

* Net-worth

$$\mathbb{E}\left[n'|X\right] = \underbrace{R^{b}b + R^{m}m + R^{m,*}m^{*} - R^{d}d - R^{*,d}d^{*}}_{\text{T}}$$

Expected Portfolio Returns

+
$$\underbrace{\mathbb{E}\left[\chi^*(s^*|\theta^*)\right] + \mathbb{E}\left[\chi(s|\theta)\right]}_{\text{Expected Settlement Costs}}$$

- * Background: b is illiquid | d circulates | m settles
- * Settlement balance (continuum in paper):

$$s = \left\{ egin{array}{cc} m+\delta d \ {
m pr.} \ 1/2 \ m-\delta d \ {
m pr.} \ 1/2 \end{array}
ight. {
m and} \ s^* = \left\{ egin{array}{cc} m+\delta d \ {
m pr.} \ 1/2 \ m-\delta d \ {
m pr.} \ 1/2 \end{array}
ight.
ight.$$

* χ capture settlement costs

> Bank's Problem

* Replace *b* from budget constraint:

 $\mathbb{E}\left[n'|X\right] = R^{b}(n - Div) + \underbrace{\left(R^{b} - R^{d}\right)d - \left(R^{b} - R^{m}\right)m + \mathbb{E}\left[\chi(s|\theta)\right]}_{\in \text{ return}} + \underbrace{\left(R^{b} - R^{*,d}\right)d^{*} - \left(R^{b} - R^{*,m}\right)m^{*} + \mathbb{E}\left[\chi(s^{*}|\theta)\right]}_{\text{$$ return}}$

> Portfolio w/ Settlement Frictions

Portfolio Separation

- * Indeterminate Div
- * $R^b = 1/\beta = \text{Return on Equity}$

* Portfolio:

* $\{m, d\}$ and $\{m^*, d^*\}$ solved separately

> Portfolio w Settlement Frictions | One Currency Problem

* Bank Objective

$$= \begin{cases} m + \delta d \text{ pr. } 1/2 \\ m - \delta d \text{ pr. } 1/2 \end{cases}$$

* χ average settlement cost
 * source of curvature

[20/34]

> Microfoundation - Settlment Cost

* Dynamic OTC

- * Alfonso and Lagos (2014,ECMA) + Atkeson et al. (2015,ECMA) = Bianchi-Bigio OTC Model
- * Sequential search for reserves:

$$\underbrace{\theta(\mu)}_{\text{nt. Bank Tightness}} \equiv -\frac{S^-}{S^+} = -\frac{\delta D - M}{\delta D + M} = -\frac{\delta - \mu}{\delta + \mu}$$

- * Matching:
 - * borrow interbank prob $\psi^{-}(\theta)$, else discount window
 - * lend interbank prob $\psi^{+}\left(\theta\right),$ else stay idle

Clearing:

$$\psi^{-}\left(\theta\right)\cdot S^{-}=\psi^{+}\left(\theta\right)\cdot S^{+}$$

> Microfoundation - Intermediation Cost

Liquidity Yields

Penalty

average liquidity yields:

$$\chi^+\equiv\psi^+(ar{
m extsf{R}}-
m extsf{R}^m)$$
 and $\chi^-\equiv\psi^-(ar{
m extsf{R}}-
m extsf{R}^m)+\Delta {
m R}ig(1-\psi^-)$

and

 $R \equiv$ endogenous interbank rate = $f(\theta)$.

* Function χ

$$\chi(\mathbf{s}) = egin{cases} \chi^- \cdot \mathbf{s} & ext{if } \mathbf{s} \leq 0 \ \ \chi^+ \cdot \mathbf{s} & ext{if } \mathbf{s} > 0 \end{cases}$$

> Yields Equilibrium Rates

Liquidity Premia

For reserves

reserve-LI

For liabilities

$$\mathcal{R}^{b} = \mathcal{R}^{d} + rac{\delta}{2} \underbrace{\left(\chi^{-} - \chi^{+}
ight)}_{ ext{dense}}$$

> Yields Equilibrium Rates

Liquidity Premia

For reserves

reserve-LI

For liabilities

$$\mathcal{R}^{b} = \mathcal{R}^{d} + rac{\delta}{2} \underbrace{\left(\chi^{-} - \chi^{+}
ight)}_{\text{dep-LP}}$$

Across currencies:

$$\boldsymbol{R}^{m} + \underbrace{\frac{1}{2} \left[\boldsymbol{\chi}^{+} + \boldsymbol{\chi}^{-} \right]}_{\text{reserve-LP}} = \boldsymbol{R}^{*,m} + \underbrace{\frac{1}{2} \left[\boldsymbol{\chi}^{*,+} + \boldsymbol{\chi}^{*,-} \right]}_{\text{reserve-LP}}$$

- * Liquidity premia: works like "risk" premia
 - * NOT: risk aversion | not limited equity
 - * YES: currency payment size | settlement technology | monetary policy

Theoretical Results

> Theorems | Special Case

* Following Propositions

- * deposit supply: perfectly inelastic
- * i.i.d shocks or random walk

* Generalize to a continuum shocks;

General Shock

withdrawal shock ω distributed $F(\cdot, \sigma)$. Deficit is:

$$\delta\left(\sigma,\mu
ight)=\int_{\mu}^{1}\omega f(\omega,\sigma)\,d\omega$$

> Size of Dollar

Funding Shock

Shock D^*

1) iid: appreciates dollar, reduces liquidity ratio and increase premia:

 $\frac{d\log e}{d\log D^*} \in [0,1),$

2) rw: appreciates dollar, but neutral

 $\frac{d\log e^*}{d\log D^*} = 1$

> Liquidity Risk

Assume:

 $\delta^*_{\sigma^*} > 0$

> Liquidity Risk

Assume:

 $\delta^*_{\sigma^*} > 0$

Dollar Payment Volatility

Shock σ^* :

1) iid: appreciates the dollar, raises liquidity ratio, and increase premia:

 $\frac{d\log e}{d\log \sigma^*} = \frac{d\log \mu^*}{d\log \sigma^*} \ge 0,$

2) rw: appreciates the dollar, raises the liquidity ratio, but neutral:

 $\frac{d\log e}{d\log \sigma^*} = \frac{d\log \mu^*}{d\log \sigma^*} \ge 0.$

* Takeaway:

 \ast liquidity risk: increases scramble for dollars, correlation with bond premia

 \ast if us vol permanently high: dollar low interest rate currency

> Interest Rate

Effects of Policy Rates

Shock to $i^{*,m}$ fixed ΔR

1) iid: appreciates dollar, raises liquidity ratio and reduces the premia:

$$\frac{d\log e}{d\log\left(1+i^{*,m}\right)} = \frac{d\log\mu}{d\log\left(1+i^{*,m}\right)} \in (0,1].$$

2) rw: appreciates dollar, increases liquidity ratio and reduces all premia:

$$\frac{d\log e}{d\log(1+i^{*,m})} = \frac{d\log\mu^*}{d\log(1+i^{*,m})} > 0.$$

* Takeway: but not 1-for-1 as in standard model

* Fama puzzle, Alvarez, Atkeson, Kehoe

Producing the Data

> Back to Empirical relationships

Generalized shocks to AR(1): log-linear approx

Effects of Policy Rates

Regression

$$\Delta \log e = cons + \beta_{\mu^*}^e \cdot \Delta \log \mu$$

Then, theoretical coefficient:

$$\beta^{\boldsymbol{e}}_{\mu^*} = \sum_{\boldsymbol{x} \in \{\sigma^*, D^*\}} \beta_{\boldsymbol{x}} \cdot \boldsymbol{w}_{\boldsymbol{x}}$$

 β_x

$$\beta_{\sigma^*} = 1$$
 and $\beta_{D^*} \approx \frac{\left(1 - \rho^{D^*}\right) R_{ss}^b}{\mathcal{LP}_{\theta^*} \theta_{\mu^*}^* \mu_{ss}^*} < 0.$

Weights w*: high variance, high persistence

* Takeway: payment volatility drives relationship if signal is strong

> Moment Fit

Calibration:

* Calibrate interbank features

Estimate:

- $\ast\,$ Kalman filter: shocks to $\sigma's$ and D's and UIP wedge
- * Fit: BP, CIP, FX and Liquidity Ratios

Baseline regression

$$\Delta \boldsymbol{e}_t = \alpha + \beta_1 \Delta \left(\boldsymbol{\mu}_t^* \right) + \beta_2 (\boldsymbol{\pi}_t - \boldsymbol{\pi}_t^*) + \beta_3 \boldsymbol{\mu}_{t-1} + \boldsymbol{\epsilon}_t$$

* Other countries: like Euro, but different policy rates

BASELINE REGRESSION AS IN EMPIRICAL SECTION

	EU	AU	CA		NZ	NK	SK	SW	UK
$\Delta\left(\mu_{t}\right)$	0.12	0.16	0.17	0.17	0.16	0.15	0.16	0.16	0.16
$\pi_t - \pi_t^*$	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
μ_{t-1}	0.01	0.01	0.01	0.00	0.01	0.01*	0.01	0.01	0.01*
cons	0.01	0.01	0.01	0.01	0.01	0.01	0.01*	0.01	0.01
N	234	232	234	234	232	234	234	234	234
adj. R^2	0.04	0.03	0.06	0.04	0.04	0.05	0.05	0.06	0.05

> Filtered Shocks

Estimated Shocks using the Kalman filter

> Variance Decomposition

Variance Decomposition of Shocks

> Shock Decomposition

Variance Decomposition

> Counterfactuals

Counterfactual without σ^{us}

Conclusion

> Conclusions

$\ast\,$ Recent work: convenience yield \mid liquidity yields \mid specialness of $\$\,$

- * source of convenience yield: liquidity of financial institutions
- * model: links liquidity | payment frictions | FX
- \ast empirically: evidence of correlation

* We are relating the model to RER