A Model of Intermediation, Money, Interest, and Prices Monetary Policy and Heterogeneity Conference

by S. Bigio (UCLA) Y. Sannikov (Stanford GSB) on October 16, 2020

Introduction

Standard Monetary Approaches

 $\star\,$ articulate: interest-rate \mid inflation tax channels

Standard Monetary Approaches

- \star articulate: interest-rate | inflation tax channels
- \star single instrument

Standard Monetary Approaches

- \star articulate: interest-rate | inflation tax channels
- \star single instrument

Implementation of Monetary Policy

★ implementation | many short rates

Standard Monetary Approaches

- \star articulate: interest-rate | inflation tax channels
- \star single instrument

Implementation of Monetary Policy

- \star implementation|many| short rates
- ★ Bianchi-Bigio (2020a)
 - * intermediation|settlement frictions
 - $\star\,$ implementation by easing frictions

Standard Monetary Approaches

- \star articulate: interest-rate | inflation tax channels
- \star single instrument

Implementation of Monetary Policy

- \star implementation|many| short rates
- ★ Bianchi-Bigio (2020a)
 - * intermediation|settlement frictions
 - $\star\,$ implementation by easing frictions

> Paper

Two instruments \rightarrow two targets:

$$\{level, spread\} = \begin{cases} loan rate = IOR + LiqPrem^{L} \left(\underbrace{M}_{reserves}, \underbrace{D}_{savings} \right) \\ \\ deposit rate = IOR + LiqPrem^{D} \left(\underbrace{M}_{reserves}, \underbrace{D}_{savings} \right) \end{cases}$$

> Paper

Two instruments \rightarrow two targets:

$$\{level, spread\} = \begin{cases} loan rate = IOR + LiqPrem^{L} \left(\underbrace{M}_{reserves}, \underbrace{D}_{savings} \right) \\ \\ deposit rate = IOR + LiqPrem^{D} \left(\underbrace{M}_{reserves}, \underbrace{D}_{savings} \right) \end{cases}$$

Integrates: implementation intermediation spread

- ★ incomplete-market monetary economy
- \star w/ wage rigidity
- \star effects of instruments
 - \star two Instruments \rightarrow two channels
 - * rate channel | credit channel

> Three Regimes I

Corridor System | Lean Balance Sheet:

★ Both Instruments Work

> Three Regimes I

Corridor System | Lean Balance Sheet:

★ Both Instruments Work

Floor System | Fat Balance Shit:

* OMO No Longer Work

> Three Regimes I

Corridor System | Lean Balance Sheet:

★ Both Instruments Work

Floor System | Fat Balance Shit:

* OMO No Longer Work

"Deposit ZLB":

- ★ Negative IOR
- $\star~$ OMO \rightarrow transformed to currency \rightarrow liquidity trap
- ★ Policy Rate → Reverse Credit Channel!

Why Positive Spread? Why Heteregeneity? Why ZLB? Why shocks?

Why Positive Spread? Why Heteregeneity? Why ZLB? Why shocks?

Boom \rightarrow Lean Balance Sheet:

 \star open spread \rightarrow contract credit

Crisis \rightarrow Stabilize AD:

- \star fat balance sheet ightarrow close spread
- $\star\,$ drop IOR below ZERO but stop at DZLB

Why Positive Spread? Why Heteregeneity? Why ZLB? Why shocks?

Boom \rightarrow Lean Balance Sheet:

 \star open spread \rightarrow contract credit

$\textbf{Crisis} \rightarrow \textbf{Stabilize AD:}$

- \star fat balance sheet ightarrow close spread
- \star drop IOR below ZERO but stop at DZLB

Stabilization w/ Heterogeneity

- \star more powerful if you start from higher spread
- \star sacrifice a bit of micro-insurance for macro insurance

Why Positive Spread? Why Heteregeneity? Why ZLB? Why shocks?

Boom \rightarrow Lean Balance Sheet:

 \star open spread \rightarrow contract credit

$\textbf{Crisis} \rightarrow \textbf{Stabilize AD:}$

- \star fat balance sheet ightarrow close spread
- \star drop IOR below ZERO but stop at DZLB

Stabilization w/ Heterogeneity

- \star more powerful if you start from higher spread
- \star sacrifice a bit of micro-insurance for macro insurance

Trade-off micro insurance for macro insurance:

- * Message: Don't give up instrument!
- * Important: heterogeneity+DZLB+shocks+Spreads!

Two Blocks

* Underlying Environment

Two Blocks

* Underlying Environment

> Environment

- * Banking Block
- * Incomplete-Market Block

Bank Block

> Banks

- * Static
- * Intermediary
 - \star lends to borrowers
 - \star fund from lenders
 - \star hold reserves
- \ast Competitive, free entry, no equity
- * Simple Budget

m + l = a

* Aggregates: capital letter

> Bank Problem

 $\ast\,$ Profits per interval $\Delta\,$

$$\Pi = \max_{\{m,a\}} \underbrace{i^m m + i^l l - i^a}_{\text{Portfolio}} + \underbrace{\mathbb{E}\left[\chi\left(\boldsymbol{b}|\boldsymbol{\theta}\right)\right]}_{\text{Settlement}}$$

* Reserve balances at CB:

$$b = \left\{ egin{array}{c} m \ {
m pr.} \ 1/2 \ m - \delta a \ {
m pr.} \ 1/2 \end{array}
ight.$$

> Microfoundation - Intermediation Cost

* Dynamic OTC: Bianchi and Bigio (2020b)

- * Alfonso and Lagos (2014) + Atkeson et al. (2015)
- * Search Market for Reserves (match and bargain)

Outside Options

- * interest on reserves *i*^m
- * discount window: i^m + penalty ι

Average Rates

> Back in bank Problem

* Instantaneous profits:

$$\Pi = \max_{\{m,a\}} \underbrace{i^m m + i^l l - i^a a}_{\text{Portfolio}} + \underbrace{\mathbb{E}\left[\chi\left(\boldsymbol{b}|\boldsymbol{\theta}\right)\right]}_{\text{Settlement}}$$

> Role of Liquidity Ratio

Proposition 1 (Nominal rates) Equilibrium

$$i' = i^m + \frac{1}{2} \underbrace{\left[\chi^+ + \chi^- \right]}_{\text{shadow val of m}}$$

$$i^{a} = i^{m} + \frac{1}{2} \underbrace{\left[\chi^{+} + \chi^{-}\right]}_{\text{shadow val of m}} - \frac{\delta}{2} \underbrace{\chi^{-}}_{\text{of d}}$$

Spread:

$$\Delta r \equiv \frac{\delta}{2} \chi^{-}$$

Takeaway #1: CB influences spread via OMO

> Control over rates

Spreads and Λ

Non-Financial Block

* Central Bank and Government Block

> Households

- * Continuum
- * CRRA expected utility
- * State
 - * Real wealth
 - * employment status: $z \in \{e, u\}$

> Employment Dynamics

* Transition probabilities

$$\Gamma^{eu}_t = \nu^{eu} + \phi^+_t$$
 and $\Gamma^{ue}_t = \nu^{ue} - \phi^-_t$

* Natural Flows $\{\nu^{ue},\nu^{eu}\}$ | Endogenous Flows: ϕ_t

* Real income :

$$dw = y(z) dt + T dt.$$

> Wealth Law of Motion

* Wealth:

$$ds = \left((i^{a} - \pi) \cdot \frac{a}{P} - \pi \cdot \frac{m}{P} - (i^{t} - \pi) \cdot \frac{l_{t}}{P_{t}} - c \right) dt + dw$$

* Portfolio

$$a+m=P\cdot s+l$$

Optimality

* Never borrow and lend

- * *i*^a for savers
- * *i*^{*l*} for borrowers
- * currency only if $i^a \leq 0$.
 - \ast ZLB on deposits DZLB

> Aggregate Demand Block

* NK Phillips Curve:

$$\dot{\pi}_{t} = \rho \left(\pi_{t} - \pi_{ss} \right) - \kappa \left(U_{ss} - U_{t} \right),$$

* Unemployment:

$$\dot{U}_t = \left[\nu^{eu} + \phi_t^+\right] (1 - U_t) - \left[\nu^{ue} - \phi_t^-\right] U_t.$$

* ϕ_t adjusts:

$\mathsf{Good}\ \mathsf{Demand} = \mathsf{Good}\ \mathsf{Output}$

* Taylor rule

$$i_t^m = i_{ss}^m + \eta \cdot (\pi_t - \pi_{ss})$$

Non-Financial Block

* Central Bank and Government Block

> Central Bank

CB operations:

$$dM_t = dL_t^{CB}$$

Reserve Market: i_t^m Profits

- * portfolio | discount window
- * distributes transfers

- I. Goods market
- II. Deposits market
- III. Loan market
- IV. Money Market

Analysis

- * 4 Results on Implementation
- * Positive Analysis
- * Normative Analysis
- * Conclusions

Analysis

- * 4 Results on Implementation
- * Positive Analysis
- * Normative Analysis
- * Conclusions

> Summary Conditions - Steady State

Proposition 2 (Steady State)

* Given Δr_{ss} , then r_{ss}^{a} clears:

$$\int_{\bar{s}}^{\infty} sf_{ss}(s) ds = 0$$

and policy rate determines inflation

$$\pi_{ss} = \bar{i}^m_{ss} - r^s_{ss}$$

Takeaway #2: \overline{i}_{ss}^m controls inflation target, OMO influence real long-run rate!

> Summary Conditions - Transitions

Proposition 3 (Real-Wealth Clearing)

* Given Δr_t , then ϕ_t clears

$$\int_{\bar{s}}^{\infty} sf_t(s) ds = 0$$

and ϕ_t determines inflation pressure * $\Delta r_t \in [0, \iota]$ implemented with L_t^{CB} * i^m floor on nominal rates

Takeaway #3: i_t^m controls r_t^a (and AD) and Δr redistribution

> Implementation

Proposition 4 (Regimes)

Corridor system | Lean Balance Sheet

- \star Open Market Ops \rightarrow ease spreads \rightarrow insurance + AD
- \star **Policy Rate Drops** \rightarrow interest rate channel \rightarrow AD

> Implementation

Proposition 4 (Regimes)

Corridor system | Lean Balance Sheet

- * Open Market Ops \rightarrow ease spreads \rightarrow insurance + AD
- \star **Policy Rate Drops** \rightarrow interest rate channel \rightarrow AD

Floor System | Fat Balance Shit

- \star Open Market Ops \rightarrow Wallace irrelevance
- \star **Policy Rate Drops** \rightarrow interest rate channel (AD stimuli)

> Implementation

Proposition 4 (Regimes)

Corridor system | Lean Balance Sheet

- $\star~$ Open Market Ops \rightarrow ease spreads \rightarrow insurance + AD
- \star **Policy Rate Drops** \rightarrow interest rate channel \rightarrow AD

Floor System | Fat Balance Shit

- \star Open Market Ops \rightarrow Wallace irrelevance
- * Policy Rate Drops \rightarrow interest rate channel (AD stimuli)

"Deposit ZLB'

- ★ Negative IOR
- ★ **OMO** → irrelevance (currency)
- ★ Policy Rate → Reverse Credit Channel

Takeaway #4: positive i^m satiation limit, negative i^m DZLB and reversal

Analysis

- * 4 Results on Implementation
- * Positive Analysis
- * Normative Analysis
- * Conclusions

> Dynamic Effects of an OMO

(a) Real Rates

(b) Output

(d) Credit

(c) Inflation Rate

> Negative IOR and the DZLB

(a) IOER

(c) Output

(b) Credit Spread

Analysis

- * 4 Results on Implementation
- * Positive Analysis
- * Normative Analysis
- * Conclusions

Aggregate Credit Shock

- \star borrowers \rightarrow yes roll-over debt | no borrow more
- \star poor unemployed ightarrow contract consumption ightarrow AD channel
- \star one time shock

Aggregate Credit Shock

- \star borrowers ightarrow yes roll-over debt \mid no borrow more
- $\star\,$ poor unemployed ightarrow contract consumption ightarrow AD channel
- \star one time shock

Policy Response

- $\star\,$ after shock ightarrow eliminate spread forever
- $\star\,$ deviate from the Taylor rule ightarrow make shocks comparable:

$$i_t^m = \bar{i}_t^m + \eta_t \cdot (\pi_t - \pi_{ss})$$

- ★ Compare:
 - * initial spread Δr_{ss}
 - * response on impact $\bar{i_0}^m$

Aggregate Credit Shock

- $\star\,$ borrowers \rightarrow yes roll-over debt \mid no borrow more
- $\star\,$ poor unemployed ightarrow contract consumption ightarrow AD channel
- $\star\,$ one time shock

Policy Response

- $\star\,$ after shock ightarrow eliminate spread forever
- $\star\,$ deviate from the Taylor rule ightarrow make shocks comparable:

$$i_t^m = \bar{i}_t^m + \eta_t \cdot (\pi_t - \pi_{ss})$$

★ Compare:

- * initial spread Δr_{ss}
- * response on impact $\bar{i_0}^m$

Welfare

- ★ In draft risky steady-state
- ★ Today:
 - * weight on steady-state (ex-ante insurance)
 - * weight on transition (ex-post aggregate demand stability)

> Welfare Loss Comparison - Certainty Equivalent

Analysis

- * 4 Results on Implementation
- * Positive Analysis
- * Normative Analysis
- * Conclusions

> Conclusion

Monetary Approaches

 \star Integrates implementation to incomplete market w/ nominal rigidity

> Conclusion

Monetary Approaches

 \star Integrates implementation to incomplete market w/ nominal rigidity

Principles

- $\star\,$ MP toolkit rich enough: control credit spreads
- \star Policy rates: nominal control independent of spread

> Conclusion

Monetary Approaches

 \star Integrates implementation to incomplete market w/ nominal rigidity

Principles

- \star MP toolkit rich enough: control credit spreads
- \star Policy rates: nominal control independent of spread

Paper

- \star Desirable to open spreads prior to aggregate shock
- ★ CBs: do not give up on an important tool!