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Abstract

This paper introduces an endogenous network of payments chains into a busi-

ness cycle model. Agents order production in bilateral relations. Some payments

are executed immediately. Other payments, chained payments, are delayed un-

til other payments are executed. Because production starts only after orders are

paid, chained payments induce production delays. In equilibrium, agents choose

the amount of chained payments given interest rates and access to internal funds

or credit lines. This choice determines the payments-chain network and aggregate

total-factor productivity (TFP). The paper characterizes equilibrium dynamics and

their innate inefficiencies. Agents internalize the direct costs of their payment de-

lays, but do not internalize the costs provoked on others. This externality produces

novel policy insights and rationalizes permanent reductions in TFP under excessive

debt.
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Says A: I could use some of B’s goods; but I have no cash to pay for them until someone with cash walks in here!

Says B: I could buy some of C’s goods, but I’ve no cash to do it ’till someone with cash walks in here.

From the book Stamp Scrip, Irving Fisher, 1933

1. Introduction

During financial crises, there are visible statistical declines in credit variables. Though

harder to measure, there is also a general perception that the seamless flow of trans-

actions of normal times slows down during crises. In ways that are yet to be better

understood, there is also a concern that productive resources remain idle when agents

have to wait longer to be paid and take longer to pay.

This paper proposes a model of payments chains and studies their implications in

the context of financial crises. Providing a theory of payments-chain crises is impor-

tant. Since the onset of modern business cycle analysis, economists have argued that

TFP fluctuations reflect credit-market conditions (e.g., Summers, 1986). This view is

even more salient during financial crises in developing economies. Economic con-

tractions during these crises are predominantly driven by large declines in total fac-

tor productivity (TFP). These declines are explained by financial crisis models that

stress input misallocation. However, producing large declines in total factor productiv-

ity remains challenging, given the smoother labor fluctuations observed during these

episodes.1 Payments-chain disruptions are an alternative mechanism to explain this

co-movement. The slowdown of payments plays a central role in this alternative mech-

anism.

To model payments-chain disruptions and their effects on production, I introduce

a payments-chain production network, in Section 2. A payments-chain network pro-

vides an explicit connection between the timing of economic transactions and the tim-

ing of production. In this network, production is organized through random bilateral

relations where customers place production orders. Some orders, spot orders, are paid

1The puzzle of large drops in TFP and capital utilization with small labor flows was first noted by Meza
and Quintin (2005). The puzzle has been found in several contexts: Meza and Quintin (2007), Mendoza
(2010), Oberfield (2013), or Karabarbounis et al. (2021), find large declines in TFP during the Chilean
banking crisis of the early eighties, the Mexican, the East Asian sudden-stop crises of the mid-nineties,
in the recent Greek crisis. These studies, in turn, cite many other examples.
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upfront and their production begins immediately. Other orders, chained orders, are

paid sequentially after other orders are paid. Since funds are transferred with delay,

chained orders induce production delays.

A payments-chain network is a collection of payment chains that encompass the

universe of economic transactions. Each payment chain is a sequence of linked trans-

actions. The first payment of each chain is spot and, thus, executed with funds external

to the network. All subsequent payments are chained and, therefore, executed with the

funds from the previous transaction in its payment chain. An interpretation is that spot

orders correspond to internal savings or working-capital lines, whereas chained orders

represent production contracts.

An important feature is that the later the position in a payment chain, the longer the

delay in producing an order. The ratio of chained orders to total orders characterizes

the length-distribution of payment chains in the network. Measured average TFP is,

Y (µ; δ) = (1− µ) + µ
δ − δµ
µ− δµ

ln

(
1− δµ
1− µ

)
< 1,

where µ is the fraction of chained orders relative to total orders and δ is a parameter

that captures production delays.

The payments-chain network of Section 2 is a stand-alone production block. This

block is portable to other applications. In the second part of the paper, Section 3, I ap-

ply the theory to study business-cycle implications. To that end, I embed the payments-

chain network into a tractable deterministic business-cycle model. In that setting, a

payments-chain network is formed every period. There is a natural borrower and a

natural saver which, for simplicity, I model as households. By construction, the saver

always has funds to place spot orders. By contrast, the borrower carries outstand-

ing debt. The borrower can obtain funds to place spot orders by borrowing from ex-

ogenous credit lines. However, her credit lines are limited by her outstanding debt.

When outstanding debt impairs her access to short-term funds, she can still place

chained orders. However, placing chained orders is privately costly, as goods bought

through chained orders are more expensive. Critically, whereas borrowers internalize

that chained orders are more expensive, they do not internalize that by placing chained

orders, they delay other transactions.
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The formula for TFPY showcases how credit conditions translate into TFP declines.

When short-term funds are limited, borrowers place chained orders to maintain a con-

sumption level. This tightening of short-term funds increases the fraction of chained

orders, µ. Measured TFP falls as labor inputs remain idle.

In the environment, the evolution of debt impacts TFP by impairing credit lines. In

turn, TFP influences the desire to accumulate debt. There are three critical regions of

the state space. For debt levels below an efficient-debt threshold, the economy is in

a steady state without delays. For moderate debt levels, the economy features a tem-

porary payments-chain crisis. Production delays last until the economy transitions

toward an efficient steady state. For such moderate debt levels, crises are only tempo-

rary because borrowers have incentives to repay debts—to access short-term funding

in the future. When debt is above a threshold, the economy features hysteresis, per-

manent payments-chain crises. Hysteresis occurs when borrowers decide to maintain

high debt levels because the benefits of deleveraging happen to late into the future and

require an excessive sacrifice of current consumption. The economy remains with per-

manent production delays in this debt overhang region of the state space.

The environment leads to novel policy implications presented in Section 4. I study

a Ramsey planner that has instruments to influence the path of debt, but cannot tax

spot and chained expenditures differentially. This Ramsey planner respects the pay-

ments technology but, as opposed to households, internalizes the effects of chained

orders on TFP. The exercise illustrates that transitions are constrained inefficient for

two reasons: savers spend too little in spot orders, and borrowers spend excessively in

chained orders. Because the inefficiency is two-sided, debt may be excessively high or

excessively low relative to the social optimum during a payments-chain crisis.

I also revisit fiscal multipliers. I allow the government to make spot expenditures or

expenditures chained to tax receipts. Even though all forms of government spending

are a waste, government spending can produce positive multipliers during a payments-

chain crisis. A novel insight is that multipliers are positive only if the government makes

spot expenditures. If government expenditures are chained to tax income, they are

detrimental. The reason for positive multipliers is not the stimulus of aggregate de-

mand, a conventional view regarding the benefits of fiscal policy. Rather, government
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expenditures stimulate output by speeding up payments, a monetary reinterpretation.

Literature Review. The literature on financial crises is vast. This paper connects with

theories that underscore the sharp declines in aggregate TFP. The link between finan-

cial crisis and TFP is not at all obvious because financial crises can manifest through

distorting labor-market outcomes, not productivity. One branch of the literature ex-

plains declines in aggregate TFP through increased misallocation—see Pratap and Ur-

rutia (2012) or Oberfield (2013). However, a common finding is that heterogeneity can

only partially explain TFP declines once models are disciplined with data on input use

and heterogeneity. Here, the channel is utilization. Other studies also explain declines

in TFP as aggravated financial conditions increase the cost of utilizing capital—see

Meza and Quintin (2007). The mechanism here is different: financial conditions im-

pact TFP through the slowdown of payments.

Beyond the focus on financial crises, the paper falls at the crossroads of several ar-

eas. Namely, the monetary-payments literature, the economic-networks literature, and

the literature on aggregate-demand externalities. The issue of how payments instru-

ments affect production is a classic theme: Lucas and Stokey (1987) analyzes a stochas-

tic cash-in-advance economy; Kiyotaki and Wright (1989) studies trade with indivisible

tokens; Lagos and Wright (2005) a model with divisible money and explicit trading ar-

rangements.2 Recent work focuses on how the distribution, and not the instruments

per se, affect production—see Lippi et al. (2015), Rocheteau et al. (2016), and Brunner-

meier and Sannikov (2017). In common with this literature, the distribution of funding

affects allocations. The main distinction is that I focus on delays in sequential pay-

ments.

Sequential payments appear in many other studies. The payments-chain network

is inspired by the model in Kiyotaki and Moore (1997). Kiyotaki and Moore (1997)

focus on finding micro-foundations of production disruptions in a single chain. The

contribution here is to present a network of transactions whose structure depends on

payment decisions. Furthermore, I embed the payments-chain network into a stan-

dard business-cycle model. Other models of sequential payments include Townsend

2See Shi (1997); Lagos et al. (2011); Lagos and Rocheteau (2009); Li et al. (2012); Nosal and Rocheteau
(2011); Rocheteau (2011) for many other directions in that area.
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(1980), which studies sequence of payments with spatial separation, Freeman (1996)

and Green (1999), which study sequential transactions in an overlapping generation

environments, La’O (2015), which studies a circular flow of transactions, or Guerrieri

and Lorenzoni (2009), which studies sequential transactions in a Lagos and Wright-

type environment. Recent work by Hardy et al. (2022) and Bocola (2022) contrast pay-

ments funded externally against trade credit.3 Relative to these papers, there are two

distinctions: here, transactions are formed in a network and the network is endoge-

nous to expenditure-savings decisions. The importance of this body of theoretical work

is substantiated by a body of empirical evidence found in a number of recent papers:

Boissay and Gropp (2007), Jacobsen (2015), Barrot (2016), and Costello (2020) among

many others.

With respect to the economic networks literature, the paper connects with mod-

els with endogenous network formation. The contribution relative to that literature

is modest, as network formation is not strategic. By contrast, in Oberfield (2018), a

network is formed through strategic partnerships. In Kopytov et al. (2022) and Elliott

et al. (2022) firms form strategic links, being aware of possible supply-chain break-

downs. Here, the network is randomly formed, but the distribution of chains is en-

dogenous to financial decisions. Like in Elliott et al. (2014), Alvarez and Barlevy (2021)

and Taschereau-Dumouchel (2022), there are externalities here too. In those models,

externalities occur when individual defaults provoke subsequent defaults. Here, exter-

nalities occur through payment delays. Bigio and La’O (2013) considers the propaga-

tion of financial shocks that induces in misallocation in a production network.. Here,

there is no misallocation in the production network, but there are production delays.

Finally, the paper connects with models of aggregate demand externalities. An early

model of these externalities is Diamond (1982) where, via search, consumption deci-

sions affect output. In most of the literature, demand externalities result from nominal

rigidities. There has been a recent interest in coupling nominal rigidities with financial

constraints—for example, Eggertsson and Krugman (2012) and Guerrieri and Loren-

zoni (2017). Recent papers have further introduced sequential transactions into envi-

ronments with nominal rigidities—for instance, Woodford (2022) and Guerrieri et al.

3See also Biais and Gollier (1997).
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(2022). In those models, demand externalities occur when agents cut back on any form

of expenditure. The nature of demand externalities here is different. In particular, the

type of expenditures by the private or public sector matters: spot orders may stimulate

output, but chained orders depress it. The demand externalities provoked by the slow-

down of payments is part of a classic narrative. Almost a century apart, the opening

quotation taken from Fisher (1933) and the renowned “babysitting co-op” analogy of

Krugman (1998) belong to that same tradition. The rest of the paper is an attempt to

provide an analytic formulation.

2. Payments-Chains and Productivity

This section presents the payments-chain network. I then embed it into a dynamic

business-cycle model.

Bilateral Relations. Production is organized through bilateral agreements in which a

customer orders a product from an agent that owns a production unit. The agreement

is exclusive in that only the agent placing the order can derive utility from its produc-

tion. In turn, production units are exclusively dedicated to producing for a specific

client.4 As examples of such relations, we can think of a home renovation project, a

medical service, the manufacturing of an engineered product with a specific blueprint,

or the commission of a piece of art.

There are two types of orders; spot and chained orders. Spot orders are paid im-

mediately. Chained orders are paid after the client receives a payment from another

transaction. There are N production units. In turn, there are N s spot orders and Nx

chained orders. There are equal numbers of production units and orders,N = N s+Nx.

In the following section, I work with a limit for N → ∞ and recast this condition as a

market-clearing condition. Each production unit is assigned an identifier, i ∈ N =

{1, 2, . . . , N}. Likewise, each order is assigned a unique identifier, i ∈ N . I partition N
into two sets, N s and N x, to denote the set of identifiers of spot and chained orders,

4The agents’ identity in these agreements is not explicit at this stage. Identities are explicit and these
matter for the economy’s dynamics in the following section.
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respectively.5 Also, I work with the assumption that payments are identical across or-

ders, a condition that I explain in the following section. I also provide an interpretation

of spot and chained once I introduce financial decisions in that section.

I define two relations that together define the payments-chain network. First, P :

N → N , is a one-to-one assignment from an order to a production unit. By assumption

i 6= P (i). The interpretation is that P (i) is the unit that produces order i. The assign-

ment P is entirely random: any unit can be assigned to any order with equal proba-

bility. Second, a chained income-expenditure relation associates a chained order to a

production unit. This relation is the identity function defined on N x. That is, order i

uses the revenues of production unit i if i ∈ N x, to make payments. The idea is that

although order i is not externally funded, the customer that places order i owns pro-

duction unit i. Hence, order i can be funded after order j = P− (i) executes a payment.

The assumption that the income-expenditure relation is the identity is innocuous.6

To anticipate how the two relations induce a payments-chain network, consider

production unit j assigned to order i, P (i) = j. The client placing order i must pay

for j′s production. This creates a payment link from i to j. In turn, if order j is spot,

j ∈ N s, the funds paid in order i are not used in further payments. However, if order j

is chained, the funds are used again to pay unit k = P (j). In other words, when j ∈ N x,

there is a flow of payments from i to j, and from j to k. If order k is also chained, the

same funds are used to pay unit P (k), and so on. The payments chain continues un-

til a final order in the chain is placed on some production unit i not associated with a

chained order. Since every order is paired with a production unit, the economy features

an entire network of transactions that forms a collection of payment chains.

The payments-chain network determines production. The production of orders oc-

curs within a unit time interval. Each order starts at some time τ ∈ [0, 1]. Once produc-

tion starts, it cannot stop. Production is linear in time: if production of starts at τ ,

production is 1− τ .

5N s and N x are a partition of N : N s ∩ N x = ∅ and N s ∪ N x = N . The number of elements is
Ns = #N s, Nx = #N x.

6Formally, we can define the chained income-expenditure relation X as the identity function onN x,
that is X : N x → N x such that X (i) = i. The idea is that i ∈ N x obtains funds from production unit,
X (i) = i. Indeed, the identity function X (i) can be replaced by any injective function X : N x → N
so that production units and associated chained orders do not have the same identifiers. Changing
identifiers does not affect the results.
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If every order were to start immediately, production would be maximal. Maximal

production may fail because of two frictions that make the payments-chain network

consequential. The first friction is that production can only start once there is proof of

funds. If an order is spot, by definition, proof of funds is immediate since the order is

funded externally. By contrast, chained orders can prove funds only after the payment

of the order that is its source of funds has been executed. Production requires proof

of funds to deter fraudulent behavior: without proof of funds, clients could promise

payments that they know will never occur. Since production is customized, this would

lead to a disadvantageous ex-post renegotiation.

If all funds could be transferred instantaneously, all orders would start immediately.

All that would be needed is have each spot order make an initial payment, and funds

would reach each chained order instantaneously. If that were the case, the payments-

chain network would be inconsequential. The second friction, limited commitment,

provokes a delay in fund transfers. The idea is that after the customer proofs funds to

start an order, the funds are only released after the fraction 1 − δ of order’s output is

inspected. Without inspection, the producer could produce another good to his ad-

vantage. Since there is no way to verify a customization, the inspection is necessary to

avoid moral hazard.

Placing these frictions together, we obtain a production structure where the greater

the number of chained orders, the more payment delays and the longer the production

delays. To produce predictions about aggregate TFP, I first formalize the definition of

the payments-chain network.

Payments-Chain Network. A sequence of payments with a single original source of

funds defines a payments chain. Naturally, every chain must start with a spot or-

der, followed by a sequence of chained orders in which those initial funds are passed

along from agent to agent. The number of chained orders defines the chain length. A

payments-chain network is the collection of all payment chains, the universe of trans-

actions during the production time interval. I employ a formal definition.

Definition 1. A payments-chain networkK is an acyclical directed network with nodes

N = {1, 2, ..., N} and links V = {(i, j) |P (i) = j, j ∈ N x}, K = (N ,V). A payments-
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chain of length n is a finite sequence of nodes {ik}nk=0 such that the sequence starts with

some i0 ∈ N s and ∀k ∈ {1, . . . , n}, P (ik−1) = ik ∈ N x. By convention, if i ∈ N s and

j = P (i) 6∈ N x, then i and j define a chain of length zero.

Nodes corresponding to the payments-chain network represent, both, orders and

production units. The directed links represent the direction of the flows of funds. Be-

cause production is bilateral, one or no links stem from each node. A link from i to j in-

dicates that i orders from production unit j and that j is a chained order,P (i) = j ∈ N x.

The source of funds of order j is the funds paid in order i. In turn, if a node does not

receive a link, it represents a spot order. Furthermore, if no links are directed toward or-

der j = P (i), then order j is also spot—in which case i and j form a zero-length chain.

Notice that in this construction, each order has a source of funds. Any (longest) path

of links defines a payments chain. The collection of payment chains is the payments-

chain network.

Examples. Let me provide an example. SetN = {1, 2, . . . , 8} and let the subset of spot

orders be N s = {1, 3, 7}. Also, define the production relation as follows: let {in}n∈N =

{1, 5, 7, 4, 6, 2, 3, 8} such that in+1 = P (in) and i1 = P (iN). Thus, the links in this

payments-chain network are V = {(1, 5) , (7, 4) , (4, 6) , (6, 2) , (3, 8)}.
Several graphs are associated with this example. The left panel of Figure 1 depicts

the chained income-expenditure relation. In that panel, I split each node into counter-

parts: the production units {un} and production orders {on} for nodes, n ∈ {1, 2, ..., 8}.
The links represent the flow of funds from production units to their corresponding

chained orders, defined by the chained income-expenditure relation.

The middle panel adds the links to the flow of payments for production, corre-

sponding to P . That is, the links in that panel add the payments production units.

Adding the links of the chained income-expenditure and production relations allows

us to trace funds. Notice that the links from orders to production units with the same

color share a common source of funds.

The right panel depicts the payments-chain network. In this example, there are

three chains. The first chain is of length one—from 1 to 5. The second chain starts at

7, and links nodes 7, 4, 6 and 2. Since 4, 6 and 2 are chained orders, the length of the
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second chain is three. The third chain links node 3 with 8 and is also of length one.
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Figure 1: Components of the Payments-Chain Network

Average TFP. I now derive the distribution of payments chain lengths as the number

of transactions increases, N → ∞. As the number of transactions increases, I keep the

ratio µ ≡ Nx/N constant. This fraction is a parameter of the probability distribution

G (n;µ) chain length in the network.

Proposition 1. Let n ∈ {0, 1, 2, . . .} be the length of a payment chain in the payments-

chain network. Then, n is a random variable with probability mass function (p.m.f.)

G (n;µ) where G (n;µ) is the geometric p.m.f. with parameter µ, that is, G (n;µ) =

(1− µ)µn.

Proof. Recall that the production relation is random. As N → ∞, a node has a link

directed toward it if it corresponds to a chained order. Thus, a node is linked with

probability µ. A node does not receive a link if it is spot, with probability 1−µ. Further-

more, recall that each chained order is funded and thus belongs to specific payment

chain which, in turn, starts with a specific spot order. Thus, there is a one-to-one rela-

tion between each payment chain and a spot order. Hence, there areN s chains in total,

which we can also index by i ∈ N s. If chain i forms a chain of length zero, it must be

that P (i) ∈ N s. This, happens with probability 1 − µ—because each production link
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indeed occurs with equal probability. Likewise, chain i is of length 1 if P (i) ∈ N x but

P (P (i)) 6∈ N x. This happens with probability µ×(1− µ). In a chain of length two, there

are two consecutive chained orders followed by a specific spot order. This occurs with

probability µ2 (1− µ). Proceeding by induction, we arrive at the geometric distribution.

I use this distribution to obtain aggregate production: I first derive the production

in a chain of arbitrary length. In a chain of length zero, there is always a spot order

whose production begins immediately. In a chain of length one, the production of the

first spot order begins immediately, but there is a delay in the second order. For the

second order, the funds are received after 1 − δ of the production of the first order is

finished. This happens at time τ = 1 − δ. Hence, this leaves only δ time to produce

the second order in the chain. For the second order, production is δ of which the 1 − δ
fraction must be inspected. If there is a third order in the chain, the transfer of funds

occurs (1− δ) δ time after the first transfer at 1−δ. Adding these consecutive delays, the

production of the third order can only start by (1− δ) + δ (1− δ) = 1− δ2. This leaves δ2

time to produce that third order.

We can deduce a pattern by forward induction.7 In a chain of length n, the corre-

sponding production vector in of n+ 1 consecutive orders in a chain is {1, δ, δ2, . . . , δn}.
Using the distribution of chain lengths to compute expectations, I obtain aggregate

production.

Proposition 2. (Output per worker): Given µ and δ, the average output corresponding

to chained orders converges to:

A (µ; δ) =
1− µ
µ

δ

1− δ
ln

(
1− δµ
1− µ

)
< 1. (1)

as N →∞. A is strictly concave, decreasing, and satisfies

lim
µ→0
A (µ; δ) = δ and lim

µ→1
A (µ; δ) = 0 and lim

δ→0
A (µ; δ) = 0 and lim

δ→1
A (µ; δ) = 1.

7If the k-th node initiates production at time 1 − δk−1, the delay from its inspection is (1− δ) δk−1,
which added to previous delays leads to a transfer of funds only by time 1− δk−1 + (1− δ) δk−1 = 1− δk.
This, leaves δk time for production to the subsequent unit. Since we computed the delay for k = 1, 2, . . ..
the productions in a chain of length n are

{
1, δ, δ2, . . . , δn

}
.
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Average output is Y (µ) = (1− µ) + µA (µ) ≤ 1.

This theorem is key as it presents a formula for output. To obtain output, I first com-

pute the average production among chained orders,A (µ; δ).8 A is strictly concave and

decreasing in µ and has well-behaved limits.9 Total output Y (µ; δ) is constructed by

noting there are (1− µ) spot orders for which production is 1 and µ for chained orders

whose average production is A. Since labor is in fixed supply, Y is both output and

TFP. However, since efficiency losses are entirely driven by utilization among chained

orders, I refer toA as TFP directly. To illustrate the formula forA (µ; δ) and its construc-

tion, the left panel of Figure 2 plots the distributions of chain lengths—corresponding

to two values of µ. For the higher µ, the distribution shifts mass to chains of greater

length. The right panel graphs A as a function of µ, for two values of δ. Productiv-

ity falls as the fraction µ increases. In turn, the lower δ, the greater the delays and the

lower TFP.

The main insight is that TFP losses result from payment delays. It is worth distin-

guishing the sources of these losses from other environments. Unlike search models,

there are no congestion externalities—the production assignment s one-to-one. Un-

like sticky-price models, the fact that payments are the same across orders does not

have implications for production (input uses do not depend on prices). The source of

TFP losses are the production delays caused by payment delays. The economy is at

full capacity when if all transactions are spot. Importantly, TFP losses are magnified

by the random assignment of orders. Holding fixed the number of spot orders, if pay-

8To obtain output, I first compute the average production of chained orders in an n-length chain,(
n−1

∑n
i=1 δ

i
)

. With the average production of each chained orders, I can compute the expected value of
production in chains with at least one chained order. Integrating across all possible lengths, we obtain
A (µ; δ), the average production for chained orders. For that, I use the discrete probability (1− µ)µn/µ.
This is the distribution of chain length conditioned on n > 0, obtained from G (n;µ). Integrating across
all possible lengths, we obtainA (µ; δ), the average production for chained orders.

9With respect to the limits of A, as µ → 1 the chains become larger but their average production
decreases to zero since the additional production of chained order decreases exponentially. On the other
hand, when µ → 0 the chain length tends to 1 and thus per-worker productivity tends to δsince average
delay times converge to one period. In turn, when δ → 0 transfers take the full production period leaving
not time for production. Conversely if δ → 1, chained orders feature no delays. Interestingly, A (µ; δ)
resembles an entropy function. I am unaware of a connections between the geometric distribution, a
discounted sequence, and the entropy function.
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Figure 2: Chain-Length Distributions and TFP

Note: Left panel graphsG (n) for µ = {0.6, 0.7}. Right panelA (µ) for δ = {0.5, 0.9}.

ment chains could be reorganized to be all of the same length, the economy would still

feature TFP losses, but less so than under random assignment (Jensen’s inequality).

Discussion: Reduction of Economic Complexity. The payments-chain network here

is simple. In practice, economies involve more complexity than exhibited here: Trans-

actions differ by size and are coupled in more intricate production networks. Moreover,

production ends by the end of the period and orders are not withdrawn.10 Studying

these richer dimensions would make the problem more realistic, but complicate the

analysis.11 Despite the crude assumptions, the payments-chain network illustrates the

effects of delays. A virtue is that we can obtain a mapping from a financial quantity, µ,

to measurable TFP. Because µ depends on agent decisions in the following section, we

can study policy exercises immune to the Lucas critique.

10To allow withdrawals, we would have to find an endogenous maximal chain-length provided that we
obtain a relative price for funds and production, as I do in the following section. In that case, the produc-
tion in a chain would drop to zero for orders above a given position. An analog, but more complicated,
formula to TFP, (1), can be derived for the case.

11Statistical physics handles combinatorial problems that lead to this complexity. Potentially, such
methods can be used in a similar environment to the one here. In particular, statistical physics offers
tools to calculate statistical properties of the system.
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3. Payments-Chains in a Business-Cycle Model

I now incorporate the payments-chain network into a business cycle setting. I use the

results of the previous section as inputs.

3.1 Environment

Timing. The horizon is infinite. Expenditure and savings decisions are programmed

at integer dates, t = {0, 1, 2, ...}. Production happens within the time interval between

integer dates, according to the payments-chain network of the previous section. It is no

longer necessary to refer to the time interval of production; it is understood to happen

within dates. There is perfect foresight. Labor units are the numeraire.

Demographics. The economy is populated by two households. One is the worker

household that inelastically supplies labor and starts with negative financial wealth.

The other is the saver household that has positive financial wealth but does not pro-

duce. Each household consumes goods by placing production orders in the payments-

chain network. I use superscripts s and w to distinguish saver from worker variables.

The advantage of this setup is that it allows for closed forms, akin to endowment economies

with log-utility, while allowing for labor income.

Income, Expenditures, Transactions, and Prices. Production and consumption de-

pend on the expenditure mix between spot and chained orders by both households.

The worker household is endowed with N labor units. As in the previous section, a la-

bor unit is assigned to a single order. I normalize payment per labor unit to 1/N so that

total labor income is one.

I work with the limit as N→∞. As I increase the number of orders, I scale the pro-

duction of each labor unit by 1/N , to keep maximal feasible production equal to one.

Implicitly, households place a large number of orders. Aggregating across all those or-

ders, the risk in the position of a chain order is diversified. This assumption is akin to

the classic “big-family” assumption of Lucas and Stokey (1987). In the previous section,

I assumed that all production units are paid the same, regardless of their production. A



15

motivation for this assumption is pairwise stability.12

At any t, both households choose amounts of spot and chained orders. To place spot

orders, households must possess funds. Savers do not produce, so they are restricted to

only making spot payments. For the rest of the paper, it is understood that the saver’s

period consumption Cs is purchased via spot orders. By contrast, the worker house-

hold has to choose between spot and chained orders. The total of goods purchased by

workers is Cw

Cw = Sw +Xw, (2)

where Sw and Xw are her goods purchased via spot and chained orders (henceforth,

spot and chained goods respectively). As in the previous section, each chained order

must be backed by a labor income unit.

Aggregating across households, there is a total of S spot goods andX chained goods

produced. In turn, adding the expenditures of both households, expenditures in spot

and chained orders are Es and Ex, respectively. In equilibrium, the total income (of

households) must equal total expenditures, so Ex + Es = 1. The ratio of chained ex-

penditures to total expenditures is µ = Ex and, thus, Es = 1− µ.

In the previous section, we worked with integer amounts of production units and

orders. I further imposed the countability condition, N = N s +Nx. Here, expenditures

are not restricted to be natural numbers when households decide on them. Moreover,

I impose a labor market-clearing condition. Both properties are internally consistent.

To see this, we can count the number of spot and chained orders with a floor and ceiling

function, N s = bEs
t ×Nc, Nx = dEx

t ×Ne, given expenditure choices. The countability

condition is satisfied as long as Ex + Es = 1; any inconsistencies—due to rounding

errors—between the expenditure choices and the number of goods bought vanish as

N→∞.

Recall that total output depends on µ. Since for each spot order, there is one unit

of output, Es = S = 1 − µ. Thus, using Theorem 2 we have that µA (µ) = X. If we

12See Bloch and Jackson (2006) for a definition. Applied here, pairwise stability requires agents to
accept the links in a network at the moment of placing orders—without knowledge of the location in the
network. To accept an order, labor units must be paid the same. Otherwise, they would sever links and a
new network would dissolve. In tun, to place an order, households must be willing to do so, anticipating
the average amount of goods obtained by placing spot and chained orders, respectively. This is the case
in this model.



16

substitute µ = Ex into this relation, we find that Ex = A−1 (µ)X. Because the number

of orders tends to infinity, we can treat q (µ) ≡ A−1 (µ) as a price of chained goods per

unit of chained expenditure. I use this auxiliary price, to define a worker expenditure

bundle:

Sw + q (µ)Xw = Ew. (3)

where Ew are the worker expenditures.

Savers. The saver’s period utility is log (·). He maximizes discounted lifetime utility

over the sequence {Cs
t }. Savers begin each t with real deposits, Dt, their only source of

wealth. Deposits earn an equilibrium returnRt. GivenDt, savers choose future savings,

Dt+1, and current expenditures.

Problem 1. (Saver Problem): Given D0 and {Rt+1}t≥0,

max
{Cst }t≥0

∑
t≥0

βt log (Cs
t ) ,

subject to the budget constraint, R−1
t+1Dt+1 + Cs

t = Dt, ∀t ≥0.

Workers. The worker’s preferences are the same. Different from savers though, work-

ers begin each t with debt, Bt, and choose between current expenditures and future

debt Bt+1. The choice Bt+1 is limited by a natural debt limit, B̄ = 1/(1 − β). Because

they are in debt, the worker must borrow intra-period to make spot expenditures, .

Namely, she comes with Bt, but increases her debt to Bt + Swt at the start of the period.

This intra-period debt carries no interest. Its repayment is always feasible since total

labor income always exceeds worker expenditures—because saver and worker expen-

ditures add up to labor income in equilibrium.By the end of the period, intra-period

debt is either paid or added to the balance of Bt+1, depending on the worker’s overall

expenditures. Critically, intra-period debt is limited by a time-varying spot-borrowing

line (SBL), B̃t:

Swt ≤ S̄t ≡ max
{
B̃t −Bt, 0

}
. (4)

An interpretation of B̃t is that it is a credit line that caps the amount of intra-period

borrowing by S̄t.



17

The worker can consume without placing spot orders by placing chained orders.

However, chained orders are costlier because q ≥ 1.

Problem 2. (Worker Problem): Given B0 and
{
Rt+1, B̃t

}
t≥0

,

max
{Swt ,Xw

t }t≥0

∑
t≥0

βt log (Cw
t ) ,

subject to the budget constraint, Bt+Ew
t =R−1

t+1Bt+1+1, ∀t ≥0, to the expenditure mix (3)

and total consumption (2), to the intra- and inter-period constraints (4), and to the nat-

ural debt limit Bt ≤ B̄.

Clearly, the worker will always prefer to make spot payments. However, if the worker

has little intra-period borrowing capacity she has to make costly chained expenditures

to reach a desired level of consumption.

Market Clearing. Clearing in the asset market requires:

Dt = Bt. (5)

Recall that since savers do not work, they must always maintain positive savings, Dt >

0. Thus, without loss of generality, I work under the assumption that the worker is

always in debt. Hence, from now on, I no longer refer toDt, and useBt to represent both

saver deposit and worker debt. Given the consumption choices of both households,

{Xw
t , S

w
t , C

s
t }, the goods-market clearing condition is:

Cs
t + Swt +Xw

t = Y (µt) . (6)

Adding both household’s budget constraints yields an income-expenditure identity:

Cs
t + Swt + qtX

w
t = 1. (7)

Definition 2. Given a sequence of
{
B̃t

}
t≥0

, a sequence {Bt, C
s
t , S

w
t , X

w
t , Rt, qt}t≥0 is a

symmetric competitive equilibrium if:
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1. Given {Rt, qt}t≥0, {Bt, S
w
t , X

w
t }t≥0 solves the worker’s problem and {Bt, C

s
t }t≥0 solves

the saver’s problem.

2. Markets clear; (5) and (6) are satisfied.

In equilibrium, the ratio of chained expenditures satisfies the following payments

identity:

µt = q (µt) ·Xw
t . (8)

3.2 Characterization

Household problem solutions. The solution to the saver’s problem is typical of log

utility and goes without proof.

Proposition 3. Given B0, the solution to the saver’s problem is:

Cs
t = (1− β)Bt and Bt+1 = Rt+1βBt ∀t ≥0. (9)

The worker’s problem is more involved. Given total expenditures Ew
t , since qt ≥ 1,

cost minimization requires the worker to spend spot as much as her SBL allows. Thus,

given Ew
t , spot and chained expenditures are respectively:

Swt = min
{
S̄t, E

w
t

}
(10)

and

Xw
t =

(
Ew
t −min

{
S̄t, E

w
t

})
/qt. (11)

Given this optimal split, I invoke the principle of optimality to cast the worker’s prob-

lem into a Bellman equation:

Problem 3. (Worker (Recursive ) Problem ): Given B0 and
{
B̃t, Rt+1, qt

}
t≥0

, workers

choose a sequence of debt holdings {Bt+1}t≥0 which follow from the solution to:

V w
t (B) = max

B′≤B̄
log (Sw +Xw) + βV w

t+1 (B′) (12)
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where Sw andXw are given by (10) and (11), respectively, and total expenditures byEw =

B′R−1
t+1 + 1−B.

The time index in the value function reflects the time dependence on Rt+1, qt, and

B̃t.The Bellman equation reformulates the worker’s problem as an expenditure-savings

problem. The solution yields total expenditures. Using total expenditures as inputs to

the optimal expenditure rules, (10) and (11), we obtain optimal spot and chained con-

sumption. The Bellman equation is key to understand the business-cycle implications

of payments-chain networks. The following lemma identifies two threshold points that

characterize the worker’s expenditure mix in terms of their debt.

Lemma 1. (Expenditure Threshold Points): Define the efficiency threshold, B?
t+1 ≡

Rt+1

(
B̃t − 1

)
. Then, Swt+1 = 0 if and only if Bt+1 > B̃t+1. In addition, Xw

t > 0 if and

only if Bt+1 > B?
t+1.

Proof. The proof is immediate. If Bt+1 > B̃t+1 , the worker cannot spend spot. In turn,

Bt+1 > Rt+1

(
B̃t − 1

)
happens if and only if Ew

t = Bt+1/Rt+1 − Bt + 1 > B̃t − Bt. In that

case, the worker spends sufficiently high that his chosen expenditure Ew
t requires him

to spend on some chained orders.

It is convenient to define some relevant objects derived from these threshold points.

Definition 3. (Marginal Prices and Marginal inflation):

I. The average price per unit of worker expenditure is Qt ≡ Ew
t /C

w
t .

II. Given B′, the price of the good at t bought with a marginal increase in B′ is:

q̃Et (B′) ≡ 1 + (qt − 1) I[B′≥B?t+1]
,

the price of the good purchased at t+ 1 after a marginal decrease in B′ is

q̃Bt+1 (B′) ≡ 1 + (qt+1 − 1) I[B′>B̃t+1].

These terms define marginal prices.
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III. Marginal inflation is Πt+1 (B′) ≡ q̃Bt+1 (B′) /q̃Et (B′), a continuous function of B′

except at discontinuity points
{
B?
t+1, B̃t+1

}
.

The average goods price is the ratio of expenditures to the quantity of goods the

worker buys. Marginal prices have the following interpretation: If at t the worker spends

on chained goods, the reduction in her debt is financed with a reduction in chained ex-

penditures. Otherwise, if she does not spend on chained goods, a reduction in her debt

is financed with a reduction in spot goods. Since the price of chained goods is qt and

the price of spot goods is 1, the worker sacrifices 1/q̃Et units of consumption per unit

of debt reduction. Likewise, if she spends spot at t + 1, any past savings can translate

into spot expenditure at t + 1. Otherwise, if she only spends in chained goods at t + 1,

any past savings translate into chained expenditures. Hence, the worker can buy 1/q̃Bt+1

additional goods by reducing her debt at t on the margin. Marginal inflation is the ratio

of marginal prices, a definition that enters the following generalized Euler equation.

Proposition 4. (Workers’s First-Order Condition): Fix a sequence
{
B̃t, Rt+1, qt

}
t≥0

such

that B̃t is an increasing and βRt+1 ≤ 1. Then, any solution {Bt+1}t≥0 to the worker’s

problem satisfies the following generalized Euler equation:

Ew
t+1

Ew
t

Qt

Qt+1

= β
Rt+1

Πt+1 (Bt+1)
if Bt+1 6= B?

t+1 (13)

and

βqtRt+1 ≥
Ew
t+1

Ew
t

≥ βRt+1 if Bt+1 = B?
t+1.

This Euler equation is unconventional, but the interpretation is standard. The left-

hand side is the ratio of marginal rates of substitution between t and t+1 consumption—

expressed in expenditures over average prices.13 The right-hand side captures the rela-

tion between discounting and rate of return, βRt+1; the novelty is that it is deflated by

marginal inflation. Marginal inflation enters the expression because this is the relevant

ratio of prices that deliver marginal utilities at t and ˙t+ 1, respectively q̃Et and q̃Bt+1. This

generalized Euler equation holds exactly except at the discontinuity point B?
t+1. The

inequalities that are satisfied when Bt+1 = B?
t+1 correspond to a sub-differential opti-

mality condition: the condition says that increasing debt is optimal to the left of B?
t+1,

13The ratio of expenditures to average prices, is the ratio of marginal utilities under log preferences.
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but not to its right.14

Importantly, the Euler equation is a necessary condition for optimality, but not suf-

ficient condition. The reason is that the objective function in the worker’s problem,

(12), is not concave in B′. This introduces further challenges. In particular, multiple

(finite) sequences ofBt+1 indexed by an initial choice ofB1, may satisfy the Euler equa-

tion. This property leads to the possibility of hysteresis in general equilibrium. Before

explaining this, I present a characterization of the worker’s problem in partial equilib-

rium.

Proposition 5. (Stationary Worker Problem): Fix B̃t = Bss andRt = β−1 and let B̃ss > 1.

Let B?
ss ≡ B?

(
1/β, B̃ss

)
. Then, a solution to the worker’s problem satisfies:

I. If B0 ≤ B?
ss, then Bt = B0 ∀t.

II. There exists a threshold Bh > Bss such that:

� If B0 < Bh, then Bt → B?
ss in finite time

� If B0 > Bh, then Bt = B0 ∀t.

The threshold Bh and the convergent sequence is given in the proof.

The proposition characterizes the dynamics of Bt: a sharper characterization of

convergence in terms of convergence times is provided in its proof. The proposition

showcases the domains of attraction toward steady-state solutions. To illustrate the

proposition, Figure 3 plots a numerical solution to the worker’s Bellman equation and

its policy functions when Rt+1 = β−1 and a that B̃t = B̃ss > 0. I also overlay the value

functions corresponding when B̃t = 0 and when B̃t = ∞. I denote these value func-

tions by V and V̄ respectively.

For debt levels below B?, V lies on top of V̄ . When B < B?, the worker can con-

sume the annuity of his human capital minus the interest on his debt, entirely on spot

consumption. This possibility yields the same value, V̄ , as if the SBL is never binding,

B̃t = ∞. When debt is above a threshold Bh, the value function lies on top of V . When

14There is also a discontinuity in the Euler equation at Bt+1 = B̃t+1, but the corresponding sub-
differential does not yield an optimality condition.
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B > Bh, the worker can consume the annuity of his human capital minus the inter-

est on his debt, but in this case, entirely on chained consumption, paying an effective

price q > 1. When B > Bh, even though the worker could potentially save to enjoy

better prices in the future, she has no incentives to save. She has no incentives to save

because the benefits of deleveraging come too far in the future and require an excessive

sacrifice of current consumption. In that case, her value function is V , as if she could

never access short-term funding. For moderate debt levels, when B ∈ (B?
ss, B

h], the

worker will delever until her debt falls below B?. All in all, saving away from financial

constraints happens if the SBL constraint is not too tight. This property leads to the

possibility of hysteresis.

B? B$( ~B)~B 7BBh

7V
V

Vss(B; ~B)

(a) Value function

B? B$( ~B)~B 7BBh

B0

B

(b) Debt Policy

B$( ~B)~B 7BBh

Sw(B)
Xw(B)
C(B)

(c) Consumption Policy

Figure 3

Note: Figures are calculated using value function iteration: β = 0.8, q = 1.75 and B̃ = 0.4 · B̄.
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Equilibrium Dynamics: From Sequential to a Functional Representation. I now an-

alyze the equilibrium dynamics of Bt. The equilibrium is recursive with state variable

Bt× B̃t× B̃t+1 ∈ [0, B̄]3. A recursive representation requires that we have a relationship

between a sequence and a recursive formulation: a variable mt, can be expressed as an

equilibrium function, m : [0, B̄]3 → R+ such that mt = m
(
Bt, B̃t, B̃t+1

)
. Hence, from

now I use m to represent the function that maps the state into its equilibrium value mt.

I also adopt the convention of using m′ to refer to mt+1.

Using the recursive formulation, from (9), (7), and (10) we have:

Cs (B) = (1− β)B, Ew (B) = 1− (1− β)B, (14)

and

Sw
(
B, B̃

)
= min

{
S̄
(
B, B̃

)
, Ew (B)

}
.

Several other equilibrium functions are deduced from these functions directly: µ =

Ew − Sw, q ≡ A−1 (µ), Xw ≡ µ/q, Q ≡ Ew/Cw, and, finally, Cw ≡ Sw +Xw.

The only endogenous argument of the state is Bt. Thus, we need a map B from the

current state to its future value, B′ = B
(
B, B̃, B̃′

)
. If we obtain that map, the equilib-

rium rate will satisfy Rt+1 = R
(
Bt, B̃t, B̃t+1

)
whereR

(
B, B̃, B̃′

)
≡ β−1B

(
B, B̃, B̃′

)
/B,

following the saver’s optimal rule. With that equilibrium function, we can define the

threshold function B?
(
B, B̃, B̃′

)
≡ R

(
B, B̃, B̃′

)
·
(
B̃ − 1

)
. I solve for B below, after

defining a functional representation for the equilibrium prices:

Π
(
B′;B, B̃, B̃′

)
≡ q̃B

(
B′; B̃′

)
/q̃E

(
B′;B, B̃, B̃′

)
,

where

q̃E
(
B′;B, B̃, B̃′

)
≡ 1 +

(
q
(
B, B̃

)
− 1
)
· I[B′≥B?(B,B̃,B̃′)]

and

q̃B
(
B′; B̃′

)
≡ 1 +

(
q
(
B′, B̃′

)
− 1
)
· I[B′>B̃′].

To find B, I combine the worker and saver Euler equations, (13) and (9). I then sub-

stitute outRt+1 and use the equilibrium worker expenditures (14), to obtain an equilib-
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rium condition B′:

B

1− (1− β)B
·Q
(
B, B̃

)
︸ ︷︷ ︸

≡E(B;B̃)

=
B′

1− (1− β)B′

Q
(
B′, B̃′

)
Π
(
B′;B, B̃, B̃′

)
︸ ︷︷ ︸

≡E ′(B′;B,B̃,B̃′)

. (15)

The left and right hand sides define functions equations E (B′;B) and E ′
(
B′;B, B̃, B̃′

)
.

At equality, these functions define the law of motion of debt. Because Q is discontinu-

ous, there may be multiple solutionsB′. The following result tells us that in a transition,

the lowest value is valid.

Proposition 6. (Equilibrium Rates and Expenditures): Consider a weakly monotone in-

creasing sequence of spot borrowing lines B̃t → B̃ss. For any B0 < Bh
(
B̃ss

)
, if an equi-

librium exist, then Bt+1 = B
(
Bt, B̃t, B̃t+1

)
where

B
(
B, B̃, B̃′

)
= max

{
B?
(
B̃
)
, arg min

B′

{
E
(
B′;B, B̃, B̃′

)
= E ′

(
B′;B, B̃, B̃′

)}}
.

Proposition 6 is key to describing the dynamics.15

Steady States. I use the subscript ss to denote steady states. In principle, workers

could make both spot and chained expenditures in steady state. However, from the

saver’s problem we know that in steady state, Rss = β−1. To be consistent with the

worker’s law of motion for debt, the worker’s marginal inflation must also equal one.

Hence, in a steady state, the worker makes either only spot expenditures or only chained

expenditures. I define an undisrupted steady state as a steady state with only spot ex-

penditures, and Yss = 1. In turn, I define an disrupted steady state as a steady state

where workers only make chained expenditures, and Yss < 1. The following corol-

lary presents a condition that guarantees that the economy is in an undisrupted steady

state.
15Implicitly, the proposition yields an algorithm to compute equilibria. Starting from, B0, the se-

quence of debt generated in equilibrium is given by B
(
B, B̃, B̃′

)
, which is the smallest solution B′ to

the equation E
(
B′;B, B̃, B̃′

)
= E ′

(
B′;B, B̃, B̃′

)
. For eachB, we obtainB′ and update the state accord-

ingly.
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Corollary 1. Fix B̃t = B̃ss. For any B̃ss > 0, the economy is in an undisrupted steady

state for any Bt ≤ B∗ss.

If Bt ≤ B∗ss the worker can borrow (intra-period) more than his current income net

of interests. If that is is the case, the economy is in an undisrupted steady state.16

Convergence Toward an Undisrupted Steady States. Next, I describe the domain of

attraction toward undisrupted steady states. The domain of attraction toward undis-

rupted steady states is the region for which the equation E (B′;B) = E ′
(
B′;B, B̃, B̃′

)
has a solution where B′ < B. This region has an upper bound:

B∗
(
B̃
)
≡ B̃/

(
Cw
(
B̃, B̃

)
+ Cs

(
B̃
))
≥ B̃.

This inequality follows from total consumption being less than total expenditures. We

have the following.

Corollary 2. Let B̃t = B̃ss. For anyB0 < B∗
(
B̃ss

)
,Bt+1 < Bt ifBt ∈

(
B?(β−1, B̃ss), B

∗(B̃ss)
)

and Bt+1 = Bt if Bt ≤ B?(β−1, B̃ss, B̃ss). If, in addition, B̃ss > 1 the economy converges

toward an undisrupted steady state in finite time (and approaches zero debt if B̃ss ≤ 1).

Corollary 2 describes the domain of attraction toward undisrupted steady states.

If the worker holds debt between B̃ and B∗
(
B̃
)

she repays her debts.17 The delever-

age will continue until she reaches a steady state debt once B∗ss. An implication is that

payments-chain crises are only temporary in the domain of attraction toward undis-

rupted steady states.

Figure 4 describes a transition toward an undisrupted steady state. The left panel of

the figure plots different debt levels in the x-axis, holding B̃ fixed. The solid blue and

dashed gray curves plot the functions E and E ′ correspondingly. The arrows in the fig-

ure trace the path of debt generated in equilibrium, following the sequence of solutions

toB′ implicit in Proposition 6. For initial conditions whereB0 > B∗ss, the economy fails

to converge. In that region, the only solution to E = E ′ happens at B′ = B. The mid-

dle panel plots the equilibrium interest rate, R
(
B, B̃, B̃′

)
. The right panel highlights a

16Observe that if B̃ss ≤ 1, then B?
(
β−1, B̃ss

)
> 0 in which case, no undisrupted steady state exists.

17Indeed, they will delever at the rateR < β−1 consistent with the condition in Proposition 4. In this
region, equation (15) may have two solutions, but only the lowest value of B′ is optimal.
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gray area in the phase diagram, this is the area of hysteresis where a transition to the

efficient steady state fails.

Proposition 6 and Corollary 2 help us interpret transitions when the exogenous bor-

rowing limit
{
B̃t

}
is transitions toward a steady state. Indeed, we can interpret the

equilibrium path as the response to a credit crunch event. We know that as long as

B0 ≤ B∗ss and B̃ss > 1, the economy converges to an undisrupted steady state. Figure 5

presents an example of a transition. The figure illustrates that there are different phases

in a transition. In its extreme phase, at the beginning of the transition, TFP remains

depressed at its lowest value because workers only spend by making chained orders

and debt remains constant. In the smoothing phase, workers anticipate that they will

be able to spend on spot goods in the subsequent period. To smooth consumption,

they increase current chained expenditures taking in more debt. This jump in debt

is followed by a recovery phase, where workers trade off consumption smoothing and

against paying off debt to increase their credit lines and spend spot. The repayment

phase corresponds to the last period with positive chained expenditures. Eventually,

the economy converges to an efficient steady state with less debt than at the start of

the transition. This pattern holds generically.

Debt-Overhang and Hysteresis of payments-chain Crises. I now study hysteresis pro-

voked by debt overhang.

Corollary 3. (Hysteresis): Let B̃t = B̃ss. For Bt ≥ Bh
(
B̃ss

)
, the economy is permanently

in a disrupted steady state.

Hysteresis occurs when debt is so large that the consumption sacrifice does not

compensate the benefits deleveraging. Recall from Figure 3 that for sufficiently high

debt levels, the worker’s value function yields the same value as if B̃t = 0 forever. When

these value functions overlap, the economy experiences debt overhang; she prefers to

stay put. The value functions are presented for the case where the rate isRt+1 = β−1. Of

course, in general equilibrium, the rate is endogenous. Figure 4 depicts the region of

hysteresis in the gray area, and shows that the hysteresis region, equilibrium rates are

indeed, Rt+1 = β−1.18

18For that rate, the only solution to the equilibrium condition E = E ′ happens at B′ = B.
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Note: Figures are calculated using value function iteration: β = 0.95, δ = 0.9, and B̃ = 0.2 · B̄. Panels (a) and (c) are the phase

diagram ofBt constructed by using E (B′;B) and E ′
(
B′;B, B̃, B̃′

)
. Panel (b) plotsR

(
B, B̃, B̃′

)
in the range of values

[B? − 1, B∗ + 2]. The shaded are in Panel (c) corresponds to the hysteresis region.

If debt starts in hysteresis region, it never falls. Excessive debt hampers the ability

to make payments quickly, and the economy ends up in a permanent state of under-

capacity production. With deterministic dynamics, hysteresis is a transient state. In

a more general setting, a hysteresis-like region where agents don’t delever, may be

reached via shocks that provoke excess optimism or low discount factors. This form

of debt overhang rationalizes several verbal descriptions of the Japanese lost decades

or the aftermath of the Euro sovereign debt crisis.

Finally, I note that the domain of attraction of undisrupted steady states and hys-

teresis are disconnected. This implies that when debt falls between B∗ss and Bh, a sym-

metric competitive equilibrium does not exist. Exploring multiplicity of equilibria or
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Figure 5: Efficient and Competitive Transition after a Smooth Credit Crunch.

Note: This figure reports a numerical example of a credit crunch episode. Figures are calculated using value function iteration:
β = 0.95, δ = 0.9, and B̃ss = 0.1 ·B?. The crunch happens at period t=10. For t ∈ {11, 29},B̃t = 0. Then B̃t returns to steady
state according to an AR(1) process with coefficient 0.9. The transition ends at t=90 when B̃t = B̃ss.

solutions with asymmetric behavior is left for future work.19

Discussion: Interpretation of Financial Constraints. Saver spot payments represent

uses of internal liquid funds, i.e. deposits. The short-term funding limit, max
{
B̃t −Bt, 0

}
,

represent “credit lines”, i.e. credit card limits, overdraft facilities, or supply chain fi-

nance facilities. Thus, worker spot payments are uses of those lines.20 In turn, chained

payments can be thought of as outstanding account receivables against goods to be

delivered. In practice, many account receivables generate from contracts in which the

product is not delivered until a fraction of the payment is anticipated. Thus, they rep-

19Note that in this middle region, at an individual level, workers would want to delever as seen in
Figure 3. In general equilibrium, this would imply a rate below β−1, for which there are no solutions to
equation (15), as shown in Figure 4. The economy may possibly feature sunspot equilibria; a situation I
do not consider in this paper.

20Other examples of facilities are Business Credit Lines, Standby Letters of Credit and Supplier Finance
Programs. Under a Supplier Finance Program, the buyer wants to pay later, whereas suppliers request
cash. Supplier Finance enables suppliers to be paid by banks against the receivables. Descriptions of
these programs are offered by some of the largest financial institutions: J.P. Morgan Supplier Finance
Facility or Citibank Supplier Finance Facility.

https://www.jpmorgan.com/solutions/treasury-payments/trade-and-working-capital/supply-chain-finance-working-capital/aw?source=wp_pa_ga_scf15b0522&jp_cmp=ci/Supply+Chain+Finance_Non+Brand_Phrase_Global+Trade_SEM_Global_NA_Standard_NA/sea/p63199101800/Supply+Chain+Finance&gclid=Cj0KCQjworiXBhDJARIsAMuzAuybNlEEvKAgX3zqbyNnMh-4VBCxNZbadijD0Em89sACG8W4HL_v8qIaAtJtEALw_wcB&gclsrc=aw.dsJ
https://www.jpmorgan.com/solutions/treasury-payments/trade-and-working-capital/supply-chain-finance-working-capital/aw?source=wp_pa_ga_scf15b0522&jp_cmp=ci/Supply+Chain+Finance_Non+Brand_Phrase_Global+Trade_SEM_Global_NA_Standard_NA/sea/p63199101800/Supply+Chain+Finance&gclid=Cj0KCQjworiXBhDJARIsAMuzAuybNlEEvKAgX3zqbyNnMh-4VBCxNZbadijD0Em89sACG8W4HL_v8qIaAtJtEALw_wcB&gclsrc=aw.dsJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwioq9-PwLP5AhXPJ0QIHfFGAPgQFnoECAQQAQ&url=https%3A%2F%2Fwww.citibank.com%2Ftts%2Fsolutions%2Ftrade-finance%2Fassets%2Fdocs%2FCiti-Supplier-Finance.pdf&usg=AOvVaw1_2YXZWe6lQrzFXMnG2bnK
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resent production agreements.

The SBL,S̃, is different from the debt limit, S̄, the hard debt limits that is most preva-

lent in macro finance models. The B̃ limit applies only to short-term funding, but

the worker has the option to roll over its repayment until the debt limit is reached. In

the section, we studied contractions in the SBL, while keeping the debt limit constant.

There is an economic motivation behind this modeling of credit crunch events: if credit

is intermediate by banks, if a bank wants to cut back on credit, it may be convenient to

tighten the SBL, but not necessarily to force workers to repay debt principals. If loan

repayment is suddenly forced, it can trigger costly defaults.

Finally, it is worth discussing the misallocation of funding. Due to the big family

assumption, the worker will receive labor income flows while there are still pending

chained orders. This happens because the worker may receive payment on spot orders

before it receives payments chained to chained expenditures. The big family assump-

tion is present to avoid a distribution of ex-post outcomes while keeping the simplicity

of the TFP function derived earlier. Chained orders would still induce delays even if

the worker pool funds from different orders.21 The option to pool funds will change the

exact functional form of the TFP function but not it’s essential features.

4. Policy Implications of Payments-Chain Crises

4.1 Constrained Inefficiency

In Section 3, we expressed the chained expenditure ratio as a function of debt levels.

In Section 2 we found that higher chained expenditure ratios lead to delays which pro-

voke declines in measured TFP. In part, those losses result from the poor organization

of payments chains, given a level of chained expenditures. Ideally, a planner would

reorganize payments so that each chain is of equal length, but governments do not

have that power. What governments can do is influence spending decisions. This sec-

21For the case where chained orders can be paid with any incoming payment, the chain length distri-
bution can again be derived analytically. In that case, for Nx > Ns, the minimal chain length would be
zero, the maximal chain length dNx/Nse, and the probability distribution uniform among chains with
n ≤ bNx/Nsc. For Nx ≤ Ns, the minimal chain is zero with probability Ns −Nx and the maximal chain
length 1.
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tion studies such policies. Traffic regulation provides a useful analogy: governments

cannot assign drivers into different lanes, but they can tax vehicles. The spirit of the

exercise is not normative but, rather, to clarify the sources of constrained inefficiency.

Ideal Pareto Weights. To study constrained inefficiency, consider a transition in a

competitive equilibrium that reaches an undisrupted steady-state debt level Bss start-

ing from a debt level B0. I study a Ramsey planner problem with Pareto weights on

workers, θ, which delivers the same steady-state debt level as the competitive equilib-

rium:
1− (1− β)Bss

(1− β)Bss

=
θ

1− θ
. (16)

Since the economy is efficient in an undisrupted steady state, any difference between

the transition path of debt in a planner and competitive equilibrium solutions uncover

a constrained inefficiency only during transitions.

The Ramsey Problem. Consider a sequence of debt taxes
{
τ kt
}

, labor taxes
{
τ `t
}
, and

expenditure taxes {τ ct }. The Ramsey Problem is:

Problem 4. (Ramsey Problem): Given B0 and
{
B̃t

}
:

max
{τkt+1,τ

c
t ,τ

`
t+1}t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the (modified) saver budget constraint and optimality:

(
1 + τ kt+1

)
R−1
t+1Bt+1 + (1 + τ ct )Cs

t = Bt, ∀t ≥0,

to the (modified) worker budget constraint and optimality:

Bt + (1 + τ ct )Ew
t = R−1

t+1Bt+1 + 1− τ `t , ∀t ≥0,

to the government’s budget constraint:

τ kt+1R
−1
t+1Bt+1 + τ ct (Cs

t + Ew
t ) + τ `t+1 = 0, ∀t ≥0,
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and the structure of transactions: (i) optimal expenditures (10-11), (ii) total consump-

tion (2), (iii) the optimality conditions of the worker and saver problems, (iv) the pay-

ments constraints (8), and (v) the shadow price, qt = A (µt)
−1.

The Ramsey planner distorts the competitive equilibrium by using credit, labor,

and expenditure taxes. This planner cannot distinguish between the two expenditure

forms, but takes into account the agents’ optimal behavior, their constraints, market

clearing, respects the transactions technology, and satisfies budget balance.

The Primal Problem. I solve the Ramsey Problem by solving an equivalent Primal

Problem.

Proposition 7. (Solution to Ramsey): The allocations induced by a solution to the Ram-

sey Problem are the same allocations as the solution to the following problem:

Problem 5. (Primal Planner Problem):Taking
{
B̃t

}
as given:

max
{Bt}t≥0

∑
t≥0

βtP
(
Bt, B̃t

)

where

P
(
B, B̃

)
≡ (1− θ) log (Cs (B)) + θ log

(
Sw
(
B, B̃

)
+Xw

(
B, B̃

))
. (17)

Let
{
Bp
t+1

}
t≥0

be a solution to the Primal Planner Problem. The solution to the Ram-

sey problem can be implemented setting (1 + τ c0) = Bp
0/B0 and a sequence of debt taxes

(a formula is given in the proof).

The proposition asserts that the solution to the Ramsey Problem can obtained from

the solution of a Primal Problem where the planner directly chooses the sequence of

debt. This relation follows because the constraint set in the Primal Problem includes

the constraints of the Ramsey Problem.22 Hence, if a solution to the primal can be

implemented with taxes, it solves the Ramsey Problem. The proposition shows that

this is the case.
22This is immediate since market clearing in the asset market and the budget balance, implies, by

Walras’s law, that the resource constraint holds. In the implementation, capital taxes and a period-zero
expenditure tax are required by the Ramsey planner to distort the evolution of debt and replicate the
solution to the Primal Problem.
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The implementation of the Primal Problem is possible because the Ramsey planner

can set capital taxes to induce a desired path of debt {Bt}. Controlling Bt is key to the

implementation. A key property of the environment is that once Bt is known, the time

t allocation is determined: CurrentBt determines the savers’ expenditures through the

constant expenditure rule of log utility. Since worker income is always one, and ag-

gregate income equals aggregate expenditures, worker expenditures are given once we

know saver expenditures. This is why the objective in the Primal Problem is separable

in time (17).

Time separability also implies that expenditure taxes are redundant after t = 0. All

that the Ramsey planner needs is a sequence of capital taxes to control the path of

debt and the labor tax to redistribute the capital tax receipts toward the worker. The

planner only needs expenditure taxes at t = 0 because debt is predetermined at t = 0.

Because the Ramsey planner can implement a time-separable primal planner problem,

an immediate lemma is that the optimal debt level at time t has a closed form that only

depends on the SBL level, B̃, at that period:

Lemma 2. (Static Primal Problem): The solution to the Primal Planner Problem Bt =

Bp
(
B̃t

)
where Bp is the solution to the following static problem:

Po
(
B̃
)

= max
B∈[0,B̄]

P
(
B, B̃

)
.

The solution to this static problem is key to understand the inefficiencies of this

environment.

Proposition 8. (Solution of the Primal Problem): The solution to the static problem Bp

has the following property:

I. Efficient Allocation. For B̃ ≥ 1−θβ
1−β , the planner’s problem is unconstrained: A = 1

and expenditures are is in steady state (16).

II. Inefficient Allocations. For B̃ < 1−θβ
1−β , the planner constraints bind. The planner

may or may not distort TFP and induce more or less debt than in steady state:
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II.a. Inefficient Insurance and Efficient Production. For B̃ ∈
[
B̃i, 1−θβ

1−β

)
, the planner

induces fewer saver expenditures than in steady state, Bp = B?
(
B̃
)
< Bss but produc-

tion is efficientA = 1. A marginal decrease in debt at Bp increases efficiency.

II.b. Inefficient Insurance and Inefficient Production If B̃s < B̃i, production is inef-

ficient,A < 1.

II.b.i Inefficient Insurance and Inefficient Production | Conflicting Case. If B̃ ∈[
B̃s, B̃i

)
, the planner induces fewer saver expenditures than in steady state,Bp < B?

(
B̃
)
<

Bss. Bp is the unique solution to

1− (1− β)B

(1− β)B
=

θ

1− θ

Q
(
B, B̃

)
q
(
B, B̃

)
q

(
B, B̃

)
− β

(
1 + εAµ

(
µ
(
B, B̃

)))
1− β

 . (18)

In this interval, a marginal decrease in debt at Bp increases efficiency.

II.b.ii Inefficient Insurance and Inefficient Production | Reinforcing Case. For B̃ ∈[
0, B̃s

]
, the planner’s problem yields a constant lowest value. The planner induces more

saver expenditures than in steady state. Bp is the unique solution to:

1− (1− β)B

(1− β)B
=

θ

(1− θ)
(
1 + εAµ (1− (1− β)B)

)
. (19)

In this interval, a marginal decrease in debt at Bp decreases efficiency.

The solution to the Primal Problem reveals a novel insight. Namely, during transi-

tions away from payments-chain crises, debt may be inefficiently high or inefficiently

low. The intuition behind this is that, for a given debt level, the planner can increase

output by reducing or increasing debt. By reducing debt, the planner distributes wealth

toward the worker and frees credit lines inducing greater spot expenditures. Alterna-

tively, by increasing debt, the planner distributes wealth toward the saver also stimulat-

ing spot expenditures. Both distributive policies distort social insurance, but increase

efficiency by speeding up production.
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The analytic expression for Bp reveals how the planner allocates expenditures, bal-

ancing productive efficiency against social insurance differently, depending on whether

B̃ falls in several intervals. There are four intervals of values of B̃ where the planner’s

solution is qualitatively different. These actual critical values depend on the threshold

points 1+θβ
1−β and

{
B̃s, B̃i,

}
whose formulas are found in the proof.

The first interval of values is where B̃ is a above a threshold level above which the

SBL constraint is not binding. In particular, if B̃ ≥ 1+θβ
1−β , the planner sets B = Bss, and

production is efficient. Furthermore, the ratio of marginal utilities equals the ratio of

Pareto weights—efficient social insurance is satisfied condition (16).

If B̃ is below the efficiency threshold, 1+θβ
1−β , the planner distorts either social insur-

ance or productive efficiency. The novelty is that the planner has two ways to increase

productive efficiency: the planner can increase efficiency on the margin, either by dis-

tributing wealth toward the worker if B < B̃ or by distributing wealth toward the saver

if B > B̃. To see this, observe that in the region where B < B̃, any further reduction

in debt translates, on the margin, into more spot expenditures by the worker and, thus,

increases efficiency. In the region where B > B̃, any increase in debt translates, on the

margin, into more spot expenditures by the saver, also increasing efficiency. Because

of this ambivalent nature, the planner’s objective function P
(
B, B̃

)
is not concave in

B, leading to bang-bang solutions as B̃ varies.

Figure 6 for describing the economics of the Primal Problem, in the regions away

from efficiency. The left panel plotsBp for different values of B̃. In the interval of values

where B̃ falls in a second interval, i.e. when B̃ ∈ [B̃i, 1+θβ
1−β ), the planner solution induces

productive inefficiency,A = 1, but but the ratio of marginal utilities no longer the ratio

of Pareto weights, as in (16). To understand why the planner does not distort produc-

tion, observe that because B?
(
B̃
)
< Bss, productive efficiency can only be achieved

only by setting Bp = B?
(
B̃
)
< Bss. Setting debt at B?

(
B̃
)

, which is less than its

steady-state value, implies that saver expenditures are less than in steady-state. Thus,

in this interval the planner sacrifices social insurance by redistributing wealth toward

the worker to guarantee productive efficiency. The planner’s solution is at a corner

because the derivative of his objective is discontinuous at B?
(
B̃
)

. This discontinuity

follows from the payments-chain network structure: the property thatA (0) < 1, which
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captures that even when the chained expenditure ratio is zero, and individual chained

order features a production delay.

When B̃ is in a further tighter and falls in the third interval, B̃ ∈
[
B̃s, B̃i

)
, the Plan-

ner begins to sacrifice productive inefficiency. To maintain productive efficiency, for

those levels of the SBL, the planner would have to redistribute even more wealth to the

worker at the expense of saver expenditures. In that region, sacrificing social insur-

ance only is not worth it. Hence, the planner sets debt above its efficient level, thus

B?
(
B̃
)
< Bp < B̃. Therefore, in this interval, the planner still redistributes wealth

(relative to steady state) toward the agent facing the financial constraint, but the plan-

ner does partially sacrifice productive efficiency. The planner balances productive ef-

ficiency and social insurance, as given by equation (18).

When B̃ falls below an extreme value, in the fourth interval, B̃ < B̃s, the nature of

the planner’s solution changes dramatically. Increasing productive efficiency by redis-

tributing wealth toward the worker requires the planner to set debt below B̃. However,

when B̃ < B̃s, setting debt so low would requires an extremely high sacrifice of saver

consumption. Below that threshold, the planner prefers to redistribute wealth away

from the worker, the constrained agent. Since the planner sets B > B̃, the planner in-

duces only chained expenditures by the worker. Once the worker only makes chained

expenditures, the SBL becomes irrelevant, so the planner chooses a constant debt level

in this region. This debt level is higher than the unconstrained ideal debt level Bss and

given by Equation (19). Debt is higher than in steady state because the planner un-

derstands that a marginal increase in debt increases the wealth and, therefore, spot

expenditures of savers. This increases productive efficiency.

The ambivalent nature of the planner’s problem is germane to the nature payments-

chain crises. In typical models with pecuniary externalities, a planner wants to rebal-

ance wealth toward the financially constrained agents to increase productive efficiency.

Thus, typically, social insurance and productive efficiency reinforce each other. Here,

for extremely low values of B̃, the planner switches to a policy mix where social insur-

ance and efficiency are in conflict. The middle and right panels of Figure 6 illustrates

the change in the planner’s strategy: In the middle panel, the planner prefers a value

of debt where social insurance and efficiency complement. The right panel shows how
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he switches strategy as the SBL is tighter.

(a) Planner debt choice (b) P
(
·, B̃
)

(moderate B̃)

(c) P
(
·, B̃
)

(tight B̃)

Figure 6: Primal Planner Solution

Note: This figure reports a numerical example of the planner’s solution. Figures are calculated using value function iteration:
β = 0.95, δ = 0.9, and θ = 0.75. Panel (a) plotsBp as a function of values of B̃ in the range [0.1, θ + 0.1] ∗Bstar . Panel’s (b) and
(c) plot the objective of the planner for different values ofB in the range [0, 1.8]. Panel (b) fixes B̃ at 0.15 and Panel (c) at 0.08.

Competitive Equilibrium vs. Efficient Transitions: An illustration. To illustrate how

transitions during a payments-chain crisis are inefficient, Figure 5 overlays the planner

solution to the competitive equilibrium described above. During the extreme phase of

the crisis, the planner redistributes wealth toward savers to induce more spot expendi-

tures. To do so, the planner must subsidize savings. From the outset, the policy seems

draconian: the planner taxes the agent suffering most, the worker, to subsidize savers.

By making savers wealthier, the planner induces more spot expenditures. The increase

in saver wealth increases TFP and, actually, leads to an increase in worker consumption
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despite that they are taxed more heavily. The increase in worker consumption comes

about through the reduction of the price of chained consumption, which more than

offsets the increment in labor taxes. A regressive policy from the outset, increases the

welfare of both agents.

During the recovery phase, as B̃ increases and enters the extreme valued interval,

the planner reverses the policy. In this region, the planner taxes savings to reduce debt.

In doing so, the planner frees some spot-borrowing capacity, and the worker can then

make some spot expenditures. As the credit standards are further relaxed, the planner

increases debts slowly reaching the efficient steady state.

Though I considered the planner solution along a transition toward an undisrupted

steady state, we also know that the planner solution described in Proposition 8 would

not allow hysteresis in payments-chain crises.23 A takeaway is that exiting the hystere-

sis region, may require policies that seem draconian from the outset.

4.2 Fiscal Policy and the Bocola Effect

Fiscal Policy: when the government pays matters. I now consider government ex-

penditures. I distinguish between spot government expenditures and expenditures

chained to future tax receipts. It turns out that the type of government expenditures

matters. I call this effect the Bocola effect, because economist Luigi Bocola suggested

this distinction.

To formulate the Bocola effect, I treat government expenditures as isomorphic to

household expenditures: I label by Gs the spot government expenditures. I assume

that the government must also borrow intra-period. In turn, the government can make

chained expenditures, Gx. For that, I treat government taxes as income units isomor-

phic to the labor income of households. For simplicity, I assume that the government

raises labor taxes and satisfies a balanced budget at the end of the period. Furthermore,

the resources used by both forms of expenditures are wasted. I consider the following

problem.

23Indeed, in the hysteresis region, Qt/qt = 1, so Bt = Bt+1 is the only solution to the debt accumula-
tion in the competitive equilibrium, (15). In the planner’s solution, that equation is altered by the term,(
1− εqµ,t

)
< 1.
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Problem 6. (Government Problem with Expenditures): Given B0 = Bss and
{
B̃t

}
:

Pg0 = max
{τkt ,Gxt ,Gst}t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the saver’s optimal behavior (9), a worker budget constraint:

Bt + Ew
t = R−1

t+1Bt+1 + 1− τ `t , ∀t ≥0

the worker’s optimal behavior (13), (10-11), and (2), a government budget-balance con-

straint with expenditures:

τ `t = Gx
t +Gs

t , ∀t ≥0,

and the ratio of chained expenditures relative to total expenditures:

µt = qtX
w
t +Gx

t and qt = A (µt)
−1 .

The problem is similar to the Ramsey Problem but this new problem includes gov-

ernment expenditures and excludes credit taxes. Instead of solving the problem, I com-

pute government multipliers near no expenditures. These multipliers transparently

showcase how the payment time of government expenditures matters:

Proposition 9. (Infinitesimal Government Multiplies): Fix {Gx, Gs} = (0, 0). Consider

an unexpected marginal increase in government expenditures of type g ∈ {x, s} at time

t. We have that:
∂Pgt
∂Gg

=
θ

Cw︸︷︷︸
marginal ind. utility

× ∂Cw

∂Gg︸ ︷︷ ︸
multiplier

for g ∈ {x, s} .

The consumption responses are:

∂Cw

∂Gx
=


−1 B < B?

(
B̃
)

−A (µ) B > B?
(
B̃
) , ∂Cw

∂Gs
=


−1 B < B?

(
B̃
)

−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.
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Finally, the output multipliers are:

∂Y
∂Gx

=


A (µ)

(
1 + εAµ

)
− 1 B < B?

(
B̃
)

0 B > B?
(
B̃
) , ∂Y

∂Gs
=


0 B < B?

(
B̃
)

1−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.

When B ≤ B?, production is efficient. For such low levels of debt, Proposition 9

shows that any form of government expenditures is a waste. First, either form of gov-

ernment expenditure reduces worker expenditures one-for-one, leading to a reduction

in welfare. In terms of output, if the expenditure is spot, the multiplier is zero as trans-

fers spot expenditures from the private to the public sector. If in turn, government

expenditures are chained, the income multiplier is negative because these government

expenditures increase productive inefficiency,
(
1−A (µ)

(
1 + εAµ

))
> 0.

In a payments-chain crisis, whenB > B?, the multipliers behave differently. Chained

expenditures are again detrimental for welfare.24 They carry a zero output multiplier

because they transfer an inefficient source of expenditures from the private sector to

the public sector. By contrast, if the government spends spot, it provokes a positive

externality. This externality is captured by the elasticity εAµ . Spot government expen-

ditures also crowd-out worker chained expenditures, but the income extracted from

workers are spent upfront. Ultimately, this reduces the average chain length and in-

creases TFP. In a deep crisis, spot government expenditures may even increase worker

consumption. In particular, this occurs when εAµ < −1, a condition that may indeed

occurs, as shown in the proof. In terms of the output multiplier of spot expenditures,

it is always positive in a payments chain crisis. The multiplier is positive in deep reces-

sions because the government substitutes inefficient private expenditures for efficient

public expenditures. Welfare increases precisely when the multiplier is above one.

We learn a new lesson. In a payments-chain crisis, government expenditures can

increase welfare but only when paid upfront during deep crises. The argument is dif-

ferent from the classic aggregate-demand stimulus arguments. In this setting, a gov-

ernment that subscribes to the idea that it can stimulate aggregate demand, simply by

24Government expenditures crowd-out worker chained expenditures one-for-one. Divided by 1/q, this
gives us the reduction in chained consumption of chained government expenditures.
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spending without considering when it pays for these expenditures, would unwillingly

reduce welfare and have no output effects. To produce positive effects, the government

must spend by paying for things upfront.

Discussion: Fiscal Transfers, and Ricardian Equivalence. Because the labor is in-

elastic to labor taxes and saver expenditures are inelastic to capital taxation, the Ram-

sey planner is equivalent to one that can set transfers.25 The exercise above therefore

shows that Ricardian equivalence fails in this setting. For example, future transfers can

have pervasive effects in the midst of a payments-chain crisis. The reason is that it may

lead workers to spend more. If workers increase chained expenditures, this may reduce

output.

5. Conclusion

The contribution of this paper is to propose a payments interpretation of financial

crises. The economic problem here is the inefficient timing of payments. This inef-

ficiency causes production delays and is a coordination failure aggravated by limited

funding. These inefficiencies are encoded inA. Whereas the policy recommendations

have a similar flavor to those in environments with demand externalities, the paper

shows that policies should be directed at accelerating payments.

I made two shortcuts. First, I assume that all transactions are bilateral and for the

identical amounts. In practice, payments and production are more complex. Second,

I assumed that households produce. In practice, payment chains are more relevant

for firms. Developing payments-chain networks with richer transactions and firm pro-

duction is important to bring realism. Nonetheless, I expect the lessons here to hold in

more general settings.

25An equivalence holds as long as transfers cannot be immediately used for spot payments.
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A. Proofs of Section 2

A.1 Proof of Proposition 2

Part 1. Derivation of TFP. In the body of the paper, I showed that for a chain of three

orders, of which two are chained, the vector of production is {1, δ, δ2} . The following

induction argument generalizes: If the k-th node initiates production at time 1 − δk−1,

the delay from its inspection is (1− δ) δk−1, which added to previous delays leads to a

transfer of funds only by time 1 − δk−1 + (1− δ) δk−1 = 1 − δk. This, leaves δk time for

production to the subsequent unit. Since we computed the delay for k = 1, 2, . . .. the

productions in a chain of length n are {1, δ, δ2, . . . , δn}.
It follows that the average output for chained orders, that is excluding the output of

the spot order in the chain, in a payments-chain of length n is

ȳxn =
1

n

n∑
m=1

δm =
δ

n

(
1− δn

1− δ

)
.

Proof. Recall that a chained order will necessarily fall in a chain with length n ≥ 1.

Thus, the p.m.f of lengths conditional on this event is

Gx (n;µ) =
(1− µ)µn

µ
.

Next, we turn to our goal of finding the expected output of a chained order:

E [ȳx] =
∞∑
n=1

ȳxnG
x (n;µ) ,

=
∞∑
n=1

(1− µ)µn

µ
· δ
n

(
1− δn

1− δ

)
,

=
(1− µ)

µ
· δ

(1− δ)
·
∞∑
n=1

(
µn

n
− (δµ)n

n

)
,

=
1− µ
µ
· δ

1− δ
· ln
(

1− δµ
1− µ

)
,
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The last equality follows from:

∞∑
n=1

an−1 =
1

1− a
↔

∞∑
n=1

an

n
= ln

(
1

1− a

)

for |a| < 1, which can be shown by simply taking derivatives to both sides. A simple

weak law of large numbers yields the desired result. Recall that we can have spot iden-

tities i ∈ N s as unique identifiers for payment chains (spot orders for a one-to-one map

with chains). Let ` (i) be the length of the payment chain that starts with spot order i.

Given that for each i ∈ N s, ` (i) ∼ i.i.d. G (µ), then

A (µ; δ) ≡ plim
N→∞

1

N s

∑
i∈N s

yx`(i) = E [yx] .

In words, the average output among chained orders converges to E [yx] as the network

gets larger (N →∞).

Next, we derive expected output—the limit as N → ∞ is implicitly. The fraction of

spot orders is (1− µ) . Production is 1 in their case. The fraction of chained orders is µ,

and they produce on averageA (µ). Thus, total output is:

Y (µ) = (1− µ) + µA (µ) .

Next, we obtain the derivative and limits of Y (µ) ,A (µ).

Part 2. Limits. We first consider the limit as µ→ 0:

lim
µ→0
A (µ; δ) =

δ

(1− δ)
lim
µ→0

(
1

µ
− 1

)
· ln
(

1− δµ
1− µ

)
= lim

µ→0

ln
(

1−δµ
1−µ

)
µ

.

The last term is the ratio of two variables that converge to zero. Using L’Hospital’s rule:

lim
µ→0

ln
(

1−δµ
1−µ

)
µ

=
δ

(1− δ)

limµ→0

(
1

1−µ −
δ

1−δµ

)
1

= δ.
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where I used

∂ ln
(

1−δµ
1−µ

)
∂µ

=
1− µ
1− δµ

(
1− δµ
1− µ

)(
1

1− µ
− δ

1− δµ

)
=

(
1

1− µ
− δ

1− δµ

)
.

For output, the limit is:

lim
µ→0
Y (µ; δ) = lim

µ→0
(1− µ) lim

µ→0

(
1 +

δ

1− δ
ln

(
1− δµ
1− µ

))
= 1.

Next, we consider the limit as µ→ 1:

lim
µ→1
A (µ; δ) =

δ

(1− δ)
lim
µ→1

(
1

µ
− 1

)
lim
µ→1

ln

(
1− δµ
1− µ

)
.

This is the product of numbers that go to 0 and infinity. Using L’Hospital’s rule:

lim
µ→1
A (µ; δ) =

limµ→1

(
− 1
µ2

)
limµ→1

(
1

1−µ −
δ

1−δµ

) = 0.

For output, the limit is:

lim
µ→1
Y (µ) = lim

µ→1
(1− µ) + lim

µ→1
µ lim
µ→1
Yx (µ) = 0.

Next, we consider the limit as limit as δ → 0:

lim
δ→0
A (µ; δ) =

(
1

µ
− 1

)
lim
δ→0

δ

(1− δ)
· lim
δ→0

ln

(
1− δµ
1− µ

)
= 0.

For output,

lim
δ→0
Y (µ) = (1− µ) + µ lim

δ→0
YxA (µ; δ) = (1− µ) .

Finally, we consider the limit as δ → 1:

lim
δ→1
A (µ; δ) =

(
1

µ
− 1

)
lim
δ→1

δ · lim
δ→1

1

(1− δ)
· lim
δ→1

ln

(
1− δµ
1− µ

)
.



5

This derivative is of the ratio of two numbers that go to zero. Using L’Hospital’s rule:

lim
δ→1
A (µ; δ) =

(
1

µ
− 1

) limδ→1
1−µ
1−δµ

(
−µ
1−µ

)
−1

=

(
1− µ
µ

)(
µ

1− µ

)
= 1.

For output,

lim
δ→1
Y (µ) = (1− µ) + µ lim

δ→1
YxA (µ; δ) = 1.

This concludes the derivation of the limits of interest.

Part 3. Monotonicity. Next, we investigate the derivatives ofA and Y . We can write:

A (µ; δ) =

(
1

µ
− 1

)
· δ

(1− δ)
· ln
(

1− δµ
1− µ

)
.

Thus,

Aµ =
δ

(1− δ)

((
− 1

µ2

)
· ln
(

1− δµ
1− µ

)
+

(
1

µ
− 1

)(
−δ

1− δµ
+

1

1− µ

))
.

Factoring out−1/µ2:

Aµ = − δ

(1− δ)
1

µ2

(
ln

(
1− δµ
1− µ

)
− µ (1− µ)

(
−δ

1− δµ
+

1

1− µ

))
= − δ

(1− δ)
1

µ2

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
.

To show that the derivative is negative, we need to show that the term in the paren-

thesis is positive. Or likewise that

ln (1− δµ)−
(
µ− δµ
1− δµ

)
> ln (1− µ) .

A concave function f (x) ≡ log (1− x) satisfies:

f (x) + f ′ (x) |y − x| > f (y) .
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Let x = δµ and y = µ. Because {δ, µ} < 1,

|y − x| = µ− δµ.

Thus, we have:

ln (1− δµ) +

(
− 1

1− δµ

)
(µ− δµ)︸ ︷︷ ︸

f ′(x)|y−x|

> ln (1− µ) .

which proves the desired inequality. Hence, Aµ < 0 for any µ > 0. At µ = 0, the

derivative is zero.

We also obtain that:

Yµ = −1 +µAµ +A = − (1−A)︸ ︷︷ ︸
>0

− δ

(1− δ)
1

µ

(ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
︸ ︷︷ ︸

>0

 for µ > 0.

The derivative is also zero at µ = 0.

Part 4. Concavity. Next we perform the convexity analysis. Aµµ is

δ

(1− δ)

[
2

1

µ3

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
− 1

µ2

(
1

1− µ
− δ

1− δµ
− 1− δ

1− δµ
− µδ 1− δ

(1− δµ)2

)]

After some algebraic manipulations, the second term in parenthesis simplifies to:

1

1− µ
− δ

1− δµ
− 1− δ

1− δµ
− µδ 1− δ

(1− δµ)2 = µ
(δ − 1)2

(1− µ) (1− δµ)2 .

Thus:

Aµµ =
δ

(1− δ)
1

µ3

[
2 ln

(
1− δµ
1− µ

)
− 2µ

(
1− δ

1− δµ

)
− µ2 (1− δ)2

(1− µ) (1− δµ)2

]
.

We can add the second and third terms to obtain:

Aµµ =
δ

(1− δ)
1

µ3

[
ln

(
1− δµ
1− µ

)2

− µ
(

1− δ
1− δµ

)(
2− µ− 3δµ+ 2δµ2

(1− µ) (1− δµ)

)]
.
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This function is strictly concave if:

ln (1− δµ)2 < ln (1− µ)2 +
1

(1− µ)2

(
µ (1− µ) (1− δ)

(1− δµ)2

(
2− µ+ 2δµ2 − 3δµ

))
(20)

Let F (x) = ln (x). Set x0 = (1− µ)2 and x1 = (1− δµ)2 so that

x0 − x1 = −µ (1− δ) (2− µ (1 + δ)) .

By strict concavity of ln (x) we have

ln (1− δµ)2 < ln (1− µ)2 − 1

(1− µ)2µ (1− δ) (2− µ (1 + δ))

so to prove thatAµµ is strictly negative, we need to prove that the right hand side of the

expression above is smaller than the condition needed for concavity, condition (20),

− 1

(1− µ)2µ (1− δ) (2− µ (1 + δ)) ≤ 1

(1− µ)2

(
µ (1− µ) (1− δ)

(1− δµ)2

(
2− µ+ 2δµ2 − 3δµ

))
.

Cancelling common terms and rearranging, this condition is equivalent to:

− (1− δµ)2 (2− µ− µδ) ≤ (1− µ)
(
2− µ+ 2δµ2 − 3δµ

)
. (21)

The term on the left is negative—and strictly negative for δ, µ < 1.26 Hence, the inequal-

ity above is verified as long as:

2 ≥ α (µ, δ) ≡ µ− 2δµ2 + 3δµ.

Hence, as long as

2 ≥ α∗ = max
{µ,δ}∈[0,1]2

α (µ, δ)

the condition for concavity holds for all {µ, δ} ∈ [0, 1]2. We study this max function. Fix

any µ. Since

δ
(
3µ− 2µ2

)
≥ 0,

26This follows immediately because µ and δ are fractions.
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the maximal value of α is achieved when δ = 1. Hence, the objective is

α∗ = max
{µ,δ}∈[0,1]2

α (µ, δ) = max
{µ}∈[0,1]

α (µ, 1) = max
{µ}∈[0,1]

4µ− 2µ2.

Maximizing the last expression over µ yields µ = 1 as a solution and α∗ = 2 as the value.

Hence, the inequality holds and guarantees (21). This suffices to prove concavity.

Next, we verify the concavity of total output. We have that Yµµ is

=Aµ + µAµµ

=− δ

(1− δ)
1

µ2

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
+

δ

(1− δ)
2

µ2
µ

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
− µ

µ2

(
1

1− µ
− δ

1− δµ
− 1− δ

1− δµ
− µδ 1− δ

(1− δµ)2

)
=Aµµ −

δ

(1− δ)
µ

µ3

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
<0.

A.2 Related Results Used Elsewhere

In this section, we derived properties that are used later in the text.

Part 5. Inverse productivity. Now, we study the inverse of productivity. Let

q (µ; δ) = A−1 (µ; δ) .

Clearly, the function has the limits:

lim
µ→0

q (µ; δ) = δ−1 and lim
µ→1

q (µ; δ) =∞ and lim
δ→0

q (µ; δ) =∞ and lim
δ→1

q (µ; δ) = 1.

We also have that:

qµ = −Aµ
A2

> 0.
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We use the limit of the derivative of this function:

qµ (µ) =

δ
(1−δ)

1
µ2

(
ln
(

1−δµ
1−µ

)
− µ

(
1−δ

1−δµ

))
(

(1−µ)
µ
· δ

(1−δ) · ln
(

1−δµ
1−µ

))2

Next, we check the convexity of function:

qµµ = −Aµµ
A2

+
Aµ
A3

> 0.

Hence, q is convex in µ.

Part 6. Elasticity ofA. A useful object in later derivations is the elasticity ofA. Con-

sider the derivative of

A (µ)µ.

We have:

A′ (µ)µ+A (µ) = A (µ)
[
1 + εAµ

]
.

Recall that,

A (µ)µ = (1− µ)

(
δ

1− δ
ln

(
1− δµ
1− µ

))
.

Hence,

A′ (µ)µ+A (µ) =
δ

1− δ

(
− ln

(
1− δµ
1− µ

)
+ (1− µ)

(
−δ

1− δµ
+

1

1− µ

))
=

δ

1− δ

(
− ln

(
1− δµ
1− µ

)
+

(
1− δ

1− δµ

))
.

Hence, we obtain that:

[
1 + εAµ

]
=

δ
1−δ

(
− ln

(
1−δµ
1−µ

)
+
(

1−δ
1−δµ

))
A (µ)

=
µ

1− µ

 1−δ
1−δµ

ln
(

1−δµ
1−µ

) − 1

 .

We are interested in the sign of 1 + εAµ and its limits. We know εAµ < 0. Thus, the sign
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of 1 + εAµ is the sign of: (
1− δ

1− δµ

)
− ln

(
1− δµ
1− µ

)
.

The limits of the function that governs the sign are:

lim
µ→0

(
1− δ

1− δµ

)
− ln

(
1− δµ
1− µ

)
= (1− δ) > 0,

and

lim
µ→1

=

(
1− δ

1− δµ

)
− ln

(
1− δµ
1− µ

)
= −∞.

Since the function is continuous in µ, the sign is ambiguous.

Next, to establish monotonicity, notice that

δ
1− δ

(1− δµ)2 −
1− δ

(1− δµ) (1− µ)
= (1− δ)

(
−δ − 1 + δ (1− δµ)

(1− δµ)2 (1− µ)

)
= − (1− δ)

(
1 + δ2µ

(1− δµ)2 (1− µ)

)
< 0.

Hence, there’s a unique crossing point where the function 1 + εAµ is negative.

Finally, I compute relevant limits. Firs, we compute:

lim
µ→0

1 + εAµ = (1− δ) lim
µ→0

µ

ln
(

1−δµ
1−µ

) =
1− δ

limµ→0
1−µ
1−δµ

1−δµ
1−µ

(
−δ

1−δµ −
−1

1−µ

) = 1.

where the first equality are the surviving terms after taking limits, the second equality

follows from L’Hospital’s rule. For the limit µ→ 1, by L’Hospital’s rule:

lim
µ→1

1

1− µ

 1

ln
(

1−δµ
1−µ

)
 = lim

µ→1

− 1
1−µ2
1−δ

(1−δµ)(1−µ)

= lim
µ→1
− (1− δµ)

(1− µ) (1− δ)
.



11

Adding terms the missing term:

lim
µ→1

[
1 + εAµ

]
= lim

µ→1
− (1− δµ)

(1− µ) (1− δ)
− µ

1− µ

= lim
µ→1

−1 + 2δµ− µ
(1− µ) (1− δ)

= −2 lim
µ→1

1

(1− µ)

= −∞.

We finally compute the elasticity. From

A′ (µ)

A (µ)
µ < 0,

we know that the elasticity εAµ is decreasing. Hence, 1 + εAµ starts at zero and falls con-

tinuously until diverging at µ→ 1.
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B. Proofs of Section 3

B.1 Preliminary Observations

We begin with a set of identities that are convenient to proof the main results.

Average Price: Definitions and Identities. Recall that the average price of a worker

as it’s expenditures relative to total consumption: Q ≡ Ew/Cw. The saver’s expenditure

is shown to be Es = (1− β)B. By the income expenditure identity:

Ew = 1− (1− β)B. (22)

Total consumption by the worker, given its optimal expenditures, is given by:

Cw =
Ew − Sw

q
+ Sw =

Ew

q
−
(

1

q
− 1

)
Sw.

where

Sw = min
{

max
{

0, B̃ −B
}
, 1− (1− β)B

}
,

Xw = (Ew − Sw) /q.

Thus, we have that:

Q =

(
1

q
−
(

1

q
− 1

)
Sw

Ew

)−1

=

(
1

q

(
1− Sw

Ew

)
+
Sw

Ew

)−1

.

Also, we have that:

Q =
Ew − Sw

Cw
+

S

Cw
= q

Xw

Cw
+

S

Cw
.

The last two proof the following result.

Lemma 3. Q is average of the goods prices weighted by the worker’s consumption shares

and Q is the harmonic mean of the goods prices weighted by the expenditure share.

Marginal Expenditure and Borrowing Prices. For convenience, I define again the

two prices that enter in marginal decisions. First, I define the marginal expenditure
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price:

q̃et ≡ qtI[Bt≥B?(B̃t)] +
(

1− I[Bt≥B?(B̃t)]

)
.

Next, I define the marginal borrowing price:

q̃bt+1 ≡ qt+1I[B̃t+1≤Bt+1] +
(

1− I[B̃t+1≤Bt+1]

)
.

Analysis of the Marginal Expenditure Price. Next, we describe the behavior of q̃et in

equilibrium. We have that q̃et = q̃e
(
Bt, B̃t

)
where:

q̃e
(
B, B̃

)
≡ q

(
µ
(
B, B̃

))
I[B≥B?(B̃)] +

(
1− I[B≥B?(B̃)]

)
.

In this expression, I am using:

µ
(
B, B̃

)
= 1− (1− β)B −min

{
max

{
0, B̃ −B

}
, 1− (1− β)B

}
.

Observe that

µ
(
B, B̃

)
=


0 B < B?

(
B̃
)
,

1 + βB − B̃ B ∈
[
B?
(
B̃
)
, B̃
]
,

1− (1− β)B B > B̃.

µ
(
B, B̃

)
is continuous, starts at zero and increases up to B = B̃, starting from that

point, the function is decreasing. Since qt is monotone in µt, the function q̃e
(
B, B̃

)
must follow the same pattern in the interior of the middle segment of teh function and

in the last segment. Also notice that whenB < B?
(
B̃
)

, qe = 1. Next, we have that since

µ is continuous, µ goes to 0 from above as B ↓ B?
(
B̃
)

so we can write,

lim
B↓B?(B̃)

q̃e
(
B, B̃

)
= lim

µ↓0
q (µ) · 1 = δ−1
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where I used the fact that limµ↓0A (µ) = δ. Hence, the function q̃e is discontinuous at

B = B? because limB↑B?(B̃) q̃
e = 1 6= δ−1, the function is also not monotonic. Then27

q̃e
(
B, B̃

)
=


1 B < B?

(
B̃
)

q B ∈
[
B?
(
B̃
)
, B̃
]

q B > B̃.

Next, we are interested in the behavior of Q
qe

, for reasons that become clear in the

main text. We have that for B < B?
(
B̃
)

, since q = 1, it must be that Q
qe

= 1. For B ≥ B̃

also qe = Q = q. Therefore, Q
qe

= 1. In the middle range of values, we have that:

Q

qe
=

1

q
· q(

1− Sw

Ew

)
+ q S

w

Ew

=
1(

1− Sw

Ew

)
+ q S

w

Ew

.

Thus, we have the following formula:

Q

qe
=


1 B < B?

(
B̃
)

1

1−min{max{0,B̃−B},1−(1−β)B}
1−(1−β)B +q(µ(B,B̃))

min{max{0,B̃−B},1−(1−β)B}
1−(1−β)B

B ∈
[
B?
(
B̃
)
, B̃
]

1 B > B̃.

Since at B = B̃ we have Sw

Ew
= 0, the function is continuous at that point. However,

B ↓ B?
(
B̃
)

=⇒ Sw

Ew
↓ 1, and q ↓ δ−1 > 1,

at that point. Thus, Q
qe

= δ at B = B?
(
B̃
)

(and at its right limit) and Q/qe = 1 at the left

limit of this point. Namely, the function Q/qe is discontinuous at B?.

Analysis of the Marginal Borrowing Price. Next, we investigate the behavior of the

marginal borrowing price. Recall that this is the price of consumption at which the

worker trades off future consumption when he borrows marginally. Let Bt+1 be the

27In fact, the value of qe at B = B? will not be used since the function is discontinuous at that point
and optimality conditions will be characterized via the right and left limit. However, I choose to define it
according to the intuition presented lines above.
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debt level the worker chooses today for next period and B̃t+1 the next period’s SBL. We

have that q̃bt+1 = q̃b
(
Bt+1, B̃t+1

)
where:

q̃b
(
B, B̃

)
≡ q

(
µ
(
B, B̃

))
I[B≥B̃] +

(
1− I[B≥B̃]

)
.

Then,

q̃b
(
B, B̃

)
=


1 B < B?

(
B̃
)
,

1 B ∈
[
B?
(
B̃
)
, B̃
]
,

q B > B̃.

We have observed that for B = B?
(
B̃
)

, all consumption is spot and thus q = 1. How-

ever, at B = B̃, the function features a discontinuity since:

lim
B↓B̃

q̃b
(
B, B̃

)
= q

(
µ
(
B̃, B̃

))
= q

(
1− (1− β) B̃

)
> 1.

Next we investigate the behavior of Q
qb

.

For any B < B?
(
B̃
)

, both qb and Q must equal 1, thus, Q
qb

= 1. Then, we have that

for B ∈
[
B?
(
B̃
)
, B̃
]

, it must the case that Q
qb

= Q because qb = 1. Finally, when B > B̃,

q̃b
(
B, B̃

)
= Q = q. Thus, we have:

Q

q̃b
=


1 B < B?

(
B̃
)
,

Q B ∈
[
B?
(
B̃
)
, B̃
]
,

1 B > B̃,

where

Q =

(
1

q

(
1− Sw

Ew

)
+
Sw

Ew

)−1

and limB↓B?(B̃) Q = 1.
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Average Price Elasticity. Next, I derive the elasticity of the average price with respect

to total debt, in equilibrium—i.e., after replacing Ew = 1 − (1− β)B. This elasticity is

critical for the Ramsey policy analysis.

We have that the average price is the harmonic mean:

Q =
1

1
q

(
1− Sw

Ew

)
+ Sw

Ew

.

where both the price q, Ew, and Sw are functions of B.

Thus, we have that:

∂Q

∂B
= −Q ·

(
1− Sw

Ew

)
∂
∂B

[
1
q

]
−
(

1
q
− 1
)

∂
∂B

[
Sw

Ew

](
1
q

(
1− Sw

Ew

)
+ Sw

Ew

) .

The numerator has two additional derivatives. The first one is:

∂

∂B

[
Sw

Ew

]
=


0 B < B?

(
B̃
)

[
B̃−B

1−(1−β)B

] (
(1−β)

1−(1−β)B
− 1

B̃−B

)
B ∈ [B?

(
B̃
)
, B̃)

0 B ≥ B̃

where the term in the intermediate region follows from:

∂

∂B

[
Sw

Ew

]
=
Sw

Ew

(
1

Sw
∂

∂B
[Sw]− 1

Ew

∂

∂B
[Ew]

)
,

but then for B ∈ [B?
(
B̃
)
, B̃)

∂

∂B
[Sw] = −1,

and
∂

∂B
[Ew] = − (1− β) .

Hence:
∂

∂B

[
Sw

Ew

]
=

[
B̃ −B

1− (1− β)B

](
(1− β)

1− (1− β)B
− 1

B̃ −B

)
< 0.
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We evaluate the limits of this function. Clearly, at

∂

∂B

[
Sw

Ew

]∣∣∣∣
B↑B̃

= − 1

1− (1− β) B̃
< −1,

and at

∂

∂B

[
Sw

Ew

]∣∣∣∣
B↓B?

=
(1− β)

(
B̃ −B?

(
B̃
))

(
1− (1− β)B?

(
B̃
))2 −

1(
1− (1− β)B?

(
B̃
))

=
(1− β)

(
B̃ −B?

(
B̃
))
−
(

1− (1− β)B?
(
B̃
))

(
1− (1− β)B?

(
B̃
))2

=
(1− β) B̃ − 1(

1− (1− β)B?
(
B̃
))2

= −1.

The last steps follows from the definition ofB?. Hence, this derivative is discontinuous.

For the second derivative of interest, recall that:

∂

∂B
[q] =

∂

∂µ
[q] · ∂µ

∂B
,

and
∂µ

∂B
=

∂

∂B
[Ew]− ∂

∂B
[Sw]

since µ = qX = Ew − Sw. Then, we have that:

∂

∂B
[q] = qµµ

∂
∂B

[Ew]− ∂
∂B

[Sw]

Ew
.

We can express this as:

∂

∂B

[
q−1
]

=
1

q
εqµ

∂
∂B

[Ew]− ∂
∂B

[Sw]

Ew − Sw
.
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Hence, we obtain:

∂Q

∂B

1

Q
= −Q ·

{(
1− Sw

Ew

)
1

q
εqµ

∂
∂B

[Ew]− ∂
∂B

[Sw]

Ew − Sw
−
(

1

q
− 1

)
Sw

Ew

[
∂
∂B

[Sw]

Sw
−

∂
∂B

[Ew]

Ew

]}
.
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B.2 Proof of Proposition 4 (Worker’s Euler equation)

Recall also the relation between the B̃t and B?
t+1:

B?
t+1 = Rt+1

(
B̃t − 1

)
.

The following lemma is used to reduce the set of cases we have to deal with.

Lemma 4. Let B̃t be an increasing sequence and βRt+1 ≤ 1 ∀t. Then, B?
t+1 ≥ B̃t+1.

Proof. Assume by contradiction that B?
t+1 ≥ B̃t+1. Substituting the expression for B?

t+1,

we have that

Rt+1

(
B̃t − 1

)
= B?

t+1 ≥ B̃t+1 ≥ B̃t.

Hence,

(1− 1/Rt+1) B̃t ≥ 1.

If indeed β ≤ R−1
t+1, the condition above implies that:

(1− β) B̃t ≥ 1.

However, this last inequality implies that:

B̃t ≥
1

1− β
= B̄.

This is a contradiction.

I now derive the worker’s Euler equation, a necessary but not sufficient condition

for optimality. Recall that we can write the worker’s total expenditures as a function of

Bt+1:

Ew
t = 1−Bt +

Bt+1

Rt+1

.

Given her total expenditures, spot expenditures are:

Sw
(
Bt, B̃t, Bt+1

)
= min

{
max

{
B̃t −Bt, 0

}
, 1−Bt +

Bt+1

Rt+1

}
.
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and her chained expenditures are:

qtX
w
t = Ew

t − Sw
(
Bt, B̃t, Bt+1

)
.

Adding both types of expenditures dividing by the price, the worker’s consumption

is:

Ct =
1−Bt + Bt+1

Rt+1
− Sw

(
Bt, B̃t

)
qt

+ Sw
(
Bt, B̃t, Bt+1

)
=

1−Bt + Bt+1

Rt+1

qt
+

(
1− 1

qt

)
min

{
max

{
B̃t −Bt, 0

}
, 1−Bt +

Bt+1

Rt+1

}
.

Now consider a sequence {Bt+1}t≥0. We obtain that the worker’s problem can be writ-

ten entirely in terms of the worker’s debt level, without reference to his expenditures:

∑
t≥0

βt log (Ct) = ...

∑
t≥0

βt log


1−Bt + Bt+1

Rt+1

qt
+

(
1− 1

qt

)
min

{
max

{
B̃t −Bt, 0

}
, 1−Bt +

Bt+1

Rt+1

}
︸ ︷︷ ︸

Sw(Bt,B̃t,Bt+1)

 .

There are two kinks in the term Sw
(
Bt, B̃t, Bt+1

)
. These kinks occur at the threshold

points given in Lemma 1, the points
{
B̃t, B

?
t+1

}
. Since the control variable in this prob-

lem isBt+1, we have to consider the kinks. The first kink, B̃t+1, corresponds to the value

of Bt+1 to the left of that value, consumption in time t+ 1 features zero spot consump-

tion. The second kink, B?
t+1, corresponds to the level of debt Bt+1 from which to its

right, there is some chained consumption in time t .

Consider two consecutive periods in the worker’s optimal sequence:

log (Ct) + β log (Ct+1)
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Define the function

Υt

(
Bt+1;Bo

t , B
o
t+2, B̃t, B̃t+1, Rt+1, qt

)
≡

log

(
1−Bot+

Bt+1
Rt+1

qt
+
(

1− 1
qt

)
min

{
max

{
B̃t −Bo

t , 0
}
, 1−Bo

t + Bt+1

Rt+1

})
+

β log

(
1−Bt+1+

Bot+2
Rt+2

qt+1
+
(

1− 1
qt+1

)
min

{
max

{
B̃t+1 −Bt+1, 0

}
, 1−Bt+1 +

Bot+2

Rt+2

})
.

The function Υt represents the value of utility at t and t + 1, considering the optimal

choices
{
Bo
t , B

o
t+2

}
, for an arbitrary level of debtBt+1. An optimal solution must satisfy:

log (Ct) + β log (Ct+1) = max
Bt+1

Υt

(
Bt+1;Bo

t , B
o
t+2, B̃t, B̃t+1, Rt+1, qt

)
.

Thus, we use a perturbation argument, with respect to Bt+1, to derive a generalized

Euler equation. In all pointsBt+1 ∈
(
0, B

)
other than the threshold points, the objective

is continuous, locally concave and differentiable in Bt+1. The kinks are in fact points of

no differentiability—because of a discontinuity of the derivative of Υt with respect to

Bt+1.

Let’s consider the differentiability points first and then deal with the kinks. The

objective of the first terms is increasing in Bt+1. The objective of the second term is

decreasing. Thus, in the intervals determined by the kinks, marginal benefits and costs

of increasing Bt+1 cross at most at a single point. At the kinks, the derivatives feature

discontinuities, hence, multiple critical points may arise. I present the analysis of the

critical points.

I break the analysis into each of the following cases.

I. Let Bo
t ≥ B̃t.

I.a Bt+1 < B̃t+1, the derivative is:

Υ′t (Bt+1) =
1

Ct

1

qtRt+1

− β 1

Ct+1

,

regardless of whether Bt+1 > B?
t+1.
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I.b Bt+1 > B̃t+1, the derivative of Υt with respect to Bt+1 is:

Υ′t (Bt+1) =
1

Ct

1

qtRt+1

− β 1

Ct+1

1

qt+1

I.a-I.b. Combining both case, observe that at B̃t+1 the following strict inequality holds

lim
B′↑B̃t+1

Υ′t (B′) < lim
B′↓B̃t+1

Υ′t (B′) (23)

From the right of B̃t+1, the value of forgone consumption at t+1 given an increase

in Bt+1 at t, is lower due to the higher price of consumption at t + 1. As a result,

if limit form the right of Υ′t ≤ 0 there is no critical point to the right of B̃t+1 and if

Υ′t ≥ 0 from the left then there is no critical point to the left of B̃t+1.

In summary, when Bo
t ≥ B̃t, and there is only consumption of chained

goods:

• If B′ ∈
(

0, B̃t+1

)
is a local maximum, then Υ′t = 0. If furthermore

lim
B′↓B̃t+1

Υ′t (B′) ≤ 0,

then only one possible value of Bt+1 satisfies the Euler equation.

• If B′ ∈
(
B̃t+1, B

)
is a local maximum, then Υ′t = 0. If furthermore

lim
B′↑B̃t+1

Υ′t (B′) ≥ 0,

then only one possible value of Bt+1 satisfies the Euler equation.

• Since the objective is concave on both intervals, there’s only one possible solution

to B′.

• B = B̃t+1 is not a solution since this requires limB′↑B̃t+1
Υ′t (B′) ≥ 0 ≥ limB′↓B̃t+1

Υ′t (B′),

which contradicts (23).

Hence, we have shown the following lemma.
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Lemma 5. When Bt ≥ B̃t, Bt+1 satisfies the Euler equation with equality:

Υ′t (Bt+1) = 0.

and Bt+t = B̃t+1 is not a solution.

II. Let Bo
t < B̃t in a solution to the worker’s problem. We know by the Lemma above

that B?
t+1 < B̃t+1. Hence, we ave the following cases:

II.a Bt+1 < B?
t+1 < B̃t+1, there is only spot consumption at t and some spot consump-

tion at t+ 1, hence the derivative of the objective is:

Υ′ (Bt+1) =
1

Ct
· 1

Rt+1

− β 1

Ct+1

.

II.b For Bt+1 ∈
(
B?
t+1, B̃t+1

)
there is some chained consumption at t and some spot

consumption at t+ 1, hence the derivative of the objective is:

Υ′t (Bt+1) =
1

qt

1

Ct
· 1

Rt+1

− β 1

Ct+1

.

II.c. For B?
t+1 < B̃t+1 < Bt+1 there is some chained consumption at t and no spot con-

sumption at t+ 1, hence the derivative of the objective is:

Υ′t (Bt+1) =
1

Ct
· 1

qt

1

Rt+1

− β 1

Ct+1

1

qt+1

.

II.a.-II.c At then not differentiable points the following strict inequalities hold

lim
B′↑B?t+1

Υ′t (B′) > lim
B′↓B?t+1

Υ′t (B′)

and

lim
B′↑B̃t+1

Υ′t (B′) < lim
B′↓B̃t+1

Υ′t (B′) .

where the inequalities follow the same arguments as in case I.
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• If B ∈
(

0, B?
(
Rt+1, B̃t

))
is a solution then Υ′t (B) = 0. If furthermore

lim
B′↑B?t+1

Υ′t (B′) ≤ 0,

then only possible value of Bt+1 satisfies the Euler equation.

• If B = B?
(
Rt+1, B̃t

)
is a solution then

lim
B′↑B?t+1

Υ′t (B′) ≥ 0 ≥ 0 lim
B′↓B?t+1

Υ′t (B′)

where at most one inequality is strict.

• If B ∈
(
B?
(
Rt+1, B̃t

)
, B̃t+1

)
is a solution then Υ′t (B) = 0. If furthermore

lim
B′↓B?t+1

Υ′t (B′) ≤ 0,

then only possible value of Bt+1 satisfies the Euler equation.

• B̃t+1 is not a solution as it yields a contradiction.

• If B ∈
(
B̃t+1, B

)
is a solution then Υ′t (B) = 0. If furthermore limB′↑B̃t+1

Υ′t (B′),

then only possible value of Bt+1 satisfies the Euler equation.

• Again, by concavity, we have a unique path in each case.

We thus have shown the following lemma:

Lemma 6. When Bt < B̃t, Bt+1 either satisfies the Euler equation with equality:

Υ′t (Bt+1) = 0.

or B′ = B?
t+1 if:

lim
B′↑B?t+1

Υ′t (B′) ≥ 0 ≥ lim
B′↓B?t+1

Υ′t (B′) .

In the latter case, there’s only spot consumption at t.
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Necessity. Using the definition of Qt, we have:

1

Ct
· Πt+1 (Bt+1)

Rt+1

− β 1

Ct+1

=
Qt

Et
· Πt+1 (Bt+1)

Rt+1

− βQt+1

Et+1

.

The cases above, are captured by the term Πt+1 (Bt+1). Hence, the equation above yields

the sign of the derivative of the change in Bt+1. Moreover,

Υ′t (B′) ≥ 0→ Qt

Et
· 1

Rt+1

− β Qt

Ct+1

≥ 0→ Et+1

Et
· Qt

Qt+1

≥ β
Rt+1

Πt+1 (Bt+1)
.

and vice versa. Thus:

lim
B′↑B̃t+1

Υ′t (B′) ≥ 0→ Et+1

Et
≥ βRt+1

and

lim
B′↓B?t+1

Υ′t (B′) ≤ 0→ qtβRt+1 ≥
Et+1

Et

Collecting all the cases above and using the definition of Πt, we arrive at a more general

version of the proposition that I show in the text.

Proposition 10. (Workers’s First-Order Condition): Fix a sequence
{
B̃t, Rt+1, qt

}
t≥0

such

that B̃t is an increasing and βRt+1 ≤ 1. Then, any solution {Bt+1}t≥0 to the worker’s

problem satisfies the following generalized Euler equation:

Ew
t+1

Ew
t

Qt

Qt+1

= β
Rt+1

Πt+1 (Bt+1)
if Bt+1 6= B?

t+1 (24)

and

qtβRt+1 ≥
Et+1

Et
≥ βRt+1 if Bt+1 = B?

t+1.

If Bt+1 = B?
t+1, then there is only spot consumption at t and Qt = 1.
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B.3 Proof of Proposition 5 (Worker’s Solution)

In a stationary version of the worker’s problem,Rt = β−1, the SBL is constant, B̃t = Bss,

and the chained-goods price is constant, qt = q. In the rest of the proof, we use B̃ss > 1.

For convenience, is suppress the arguments of B?
(

1/β, B̃ss

)
to define its steady state

value, B?. I set to prove the following:

I. If B0 ∈ [0, B?], then Bt = B0, ∀t.

II. There exists a threshold Bh > B̃ss such that:

II.a If B0 < Bh, then Bt → in finite time.

II.b If B0 > Bh, then Bt = B0 ∀t.

The proof presented in this Appendix, also characterizes the convergence times Bt →
B?
(

1/β, B̃ss

)
and the threshold Bh.

The strategy is as follows: First, I present two value functions, V̄ (B) and V (B), that

correspond to upper and lower bounds of the the worker’s value function. To prove Part

I, I show that for B0 ≤ B? a constant debt policy is optimal and delivers the same value

us the upper bound V̄ (B). To prove Part II.a, I show that for any B0 ∈ (B?
(
B̃
)
, B̃], the

optimal solution implies deleveraging in finite time where debt converges to Bt → B?.

This implies that V (B) > V (B) in B0 ∈ (B?
(
B̃
)
, B̃]. Finally, to prove Part II.a and II.b,

I prove the existence of a level Bh > B̃ such that for debt levels above Bh there worker

leaves his debt constant and V (B) = V (B). I finally show that if V (B) > V (B), then,

V (·) > V (·) holds for any debt level below that value. This guarantees the existence of

a unique threshold Bh.

As a preliminary calculation, I solve for two value functions that correspond to up-

per and lower bounds of the worker’s value function.

Value Function Bounds. I consider two auxiliary problems. First, the unconstrained

worker problem that produces an upper bound:

Problem 7.

V̄ (B) = max
B′≤B̄

ln (Ew) + βV̄ (B′)
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subject to:

B + Ew = 1 +
B′

R
.

Second, a worker problem where the worker is induced to always consume chained

goods:

Problem 8.

V (B) = max
B′≤B̄

ln (Ew/q) + βV (B′)

subject to:

B + Ew = 1 +
B′

R
.

The respective solutions to these problems is given in the Following Lemma.

Lemma 7. The solutions to V̄ (B) and V (B) are:

V̄ (B) =
ln (1− (1− β)B)

1− β

and

V (B) =
ln (1− (1− β)B) + ln (q)

1− β
.

In both cases, optimal expenditures are:

Ew = 1− (1− β)B.

Proof. I first solve for V . I guess and verify that the solution is:

V (B) =
ln (1− (1− β)B)− ln (q)

1− β
.

Using the guess into the value function:

V (B) = max
B′≤B̄

ln

(
1−B +

B′

R

)
− ln (q) +

β

1− β
ln (1− (1− β)B′) +

β

1− β
ln (q) .

Taking first-order conditions with respect to B′ yields:

1

1−B +B′/R

1

R
=

β

1− (1− β)B′
.
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Then, using that β = R−1, we obtain:

1

1−B +B′β
=

1

1−B′ +B′β

Thus, the solution is B = B′.

As a result, expenditures are:

C = (1− (1− β)B) q.

Ew = 1 +

(
B

R
−B

)
= 1− (1− β)B.

Substituting back expenditures into the Bellman equation, we obtain:

V (B) = ln (1− (1− β)B)− ln (q) +
β

1− β
(ln (1− (1− β)B)− ln (q))

=
ln (1− (1− β)B)

1− β
− ln (q)

1− β

which verifies the conjecture. Specializing to q = 1, we also obtain the solution for

V̄ (B).

Note that V (B) ∈
[
V (B) , V̄ (B)

]
, since the value functions correspond to more

constrained and more relaxed problems than the original worker’s problem.

Proof of Part I. I now proof Part I in the statement of the proposition. Part I is a special

case of the following Lemma.

Lemma 8. For B ≤ B?(B̃), V (B) = V̄ (B) and Ew = 1− (1− β)B.

Proof. The proof is immediate. We know that V (B) ≤ V̄ (B). I guess and verify that

setting

Ew = 1− (1− β)B

in the original problem, yields the same value.
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Note that:

Ew ≤ 1− (1− β)B?

= 1 + βB? −B?

= 1 + ββ−1
(
B̃ − 1

)
−B?(B̃)

= B̃ −B?(B̃)

≤ B̃ −B.

The first inequality follows because B < B?, the second equality uses the definition of

B?. The last equality proofs that consuming only spot is feasible. Moreover,

B′ = β−1 (B + Ew − 1) = β−1 (B + Ew − 1) = B.

Since consumption is:

C = 1− (1− β)B,

for all periods, V (B), attains the upper bound,

V (B) =
ln (1− (1− β)B)

1− β
= V̄ (B) .

Proof of Part II - Preliminary Lemmas. I now begin the proof of Parts II.a and II.b in

the proposition. A key result is to find the set of values B for which setting B′ = B? is

optimal. First, I present an intermediate Lemma:

Lemma 9. If B′ = B?, then C = B̃ −B.

Proof. Whenever B′ = B? we have, by definition of B?, that Q = 1. Thus:

C = 1 +
B?

R
−B = 1 +

(
B̃ − 1

)
βR

−B = B̃ −B, (25)

where I used that: B? = 1/β
(
B̃ − 1

)
.
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Next, I find the of values ofB for which settingB′ = B? is satisfies the worker’s Euler

equation, (13). Define the set:

B0 ≡
[
B?, B? +

(
1− 1

q

)(
B̃ −B?

)]
. (26)

This set defines the set of values of B that converge to B? after one period.

Proposition 11. B′ = B? if and only if B ∈ B0.

Proof. To proof the result, I evaluate find the set of valuesB′ such that the sub-differential

equation for the Euler equation holds:

C (B?)

C (B′)
∈ [1, q] ,

where I used that marginal prices are both 1 since B′ ≤ B? < B̃ and βR = 1. Hence, by

the Euler equation is:

B̃ −B?

B̃ −B
≥1 ⇐⇒ B ≥ B?,

so B ≥ B? and, thus, B? is the lower bound of the interval. For the upper bound I use

that:

B̃ −B?

B̃ −B
≤ q ⇐⇒ B ≤ B̃ − 1

q

(
B̃ −B?

)
< B̃.

Hence, for any B ∈ B0, the inequality condition that replaces the Euler equation is

satisfied.

I show another auxiliary result regarding a sequence of debt that delevers to reach

the set B ∈ B0 while satisfying the Euler equation:

Proposition 12. Let γ ≡ β/q. Define the function:

Γ(t) ≡ 1− γt

1− γ
− q−t1− β

t

1− β
, t ≥ 0.
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Let T be the unique positive integer that satisfies:

Γ(T ) < 1 < Γ(T + 1).

Any decreasing sequence B−t for t ∈ {0, T}, that satisfies the worker’s Euler equation,

(13), with a terminal condition B0 ∈ B0, satisfies that B−t ∈ B−t where

B−t ≡ (B`
−t, B

`
−t−1] ∩

[
0, B̃ss

]
,

and where,

B`
−t ≡ B? +

(
B̃ −B?

)
Γ(t).

Moreover, ∪Tt=0B−t = (B?, B̃ss].

The proposition presents a set of sequences that solve the Euler equation backwards

in time.

Proof. For any B ∈ (B?, B̃], the ratio of marginal prices is q. Consider a decreasing

sequence of debt levels that converges to some B0 ∈ B0. Then, for any B−t ∈ (B?, B̃ss],

we obtain a difference equation induced the worker’s Euler equation:

C−t =
1

q
C−t+1 if B−t+1 ∈ (B?, B̃ss], (27)

for t ∈ [1, T ], and satisfies the terminal condition C0 = B̃ − B0. Shifting forward the

Euler equation (27) I obtain:

C0/C−t = qt. (28)

Next, I transform the Euler equation into a difference equation in debt. Using the

budget constraint:

C−t = B̃ −B−t︸ ︷︷ ︸
S

+
1

q

(
1 + βB−t+1 − B̃

)
︸ ︷︷ ︸

X

if B−t+1 ∈ (B?, B̃ss]. (29)

In particular,

C0 = B̃ −B0, (30)
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by using the definition of B?. Hence, combining (29) with (30), and (28), we arrive at:

B̃ −B−t + q−1
(

1 + βB−t+1 − B̃
)

= q−t
(
B̃ −B0

)
, ∀t ∈ [1, T ] ,

where T is the highest value of t such that B−T < B̃.

Re-arranging, we obtain

B−t = B̃ − q−t
(
B̃ −B0

)
+ q−1

(
1 + βB−t+1 − B̃

)
, ∀t ∈ [1, T ] .

We can simplify this expression by noticing that:

1 + βB−t+1 − B̃ = 1 + βB−t+1 + βB? − βB? − B̃

= β (B−t+1 −B?) + 1 + βB? − B̃

= β (B−t+1 −B?) .

Thus, we produce a difference equation in debt:

B−t = B̃ − q−t
(
B̃ −B0

)
+
β

q
(B−t+1 −B?) , ∀t ≥ 1. (31)

This difference equation must have a terminal condition in some B0 ∈ B0.

Let
{
B`
−t
}

and
{
Bu
−t
}

denote the boundaries of the set B−t:

Bu
0 ≡ B? +

(
1− 1

q

)(
B̃ −B?

)
and

B`
0 ≡ B?.

Lemma 10. Let B0 = B`
0. The solution to (31)

B`
−t = B̃ − q−t

(
B̃ −B0

)
+
β

q

(
B`
−t+1 −B?

)
, ∀t ≥ 1

is:

B`
−t = B? +

(
B̃ −B?

) t−1∑
τ=0

γτ
(
1− q−t+τ

)
.
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where γ ≡ β/q.

Proof. Subtract B? from both sides of the difference equation (31):

B`
−t −B? = B̃ −B? − q−t

(
B̃ −B0

)
+ q−1β

(
B`
−t+1 −B?

)
, ∀t ≥ 1.

DefineZ`
−t ≡ B−t−B?. With this change of variables, we obtain the difference equation:

Z−t = B̃ −B? − q−t
(
B̃ −B?

)
+ q−1βZ`

−t+1, ∀t ≥ 1,

with terminal condition Z`
0 = 0. Therefore, since q−1β < 1, the series converges to:

Z−∞ =
B̃ −B?

1− q−1β
> B̃ −B? → B−∞ = B? +

B̃ −B?

1− q−1β
> B̃,

implying that the equation is valid only up to some T .

I now solve the difference equation, rolling the difference forward in time up to

t = 0:

Z−t = B̃ −B? − q−t
(
B̃ −B?

)
+ q−1βZ−t+1

=
(
B̃ −B? − q−t

(
B̃ −B?

))
+ q−1β

((
B̃ −B? − q−t+1

(
B̃ −B?

))
+ q−1βZ−t+2

)
=

t−1∑
τ=0

(
q−1β

)τ ((
B̃ −B?

)
− q−t+τ

(
B̃ −B? − Z0

))
+
(
q−1β

)t
Z0.

For convenience, use γ ≡ β/q. We produce:

Z−t =
t−1∑
τ=0

γτ
((
B̃ −B?

)
− q−t+τ

(
B̃ −B? − Z0

))
+ γtZ0,

=
(
B̃ −B?

) t−1∑
τ=0

γτ
(
1− q−t+τ

)
+ Z0

(
t−1∑
τ=0

γτq−t+τ + γt

)
.

Since Z0 = 0 we obtain:

Z−t =
(
B̃ −B?

) t−1∑
τ=0

γτ
(
1− q−t+τ

)
.
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This condition implies:

B`
−t = B? +

(
B̃ −B?

) t−1∑
τ=0

γτ
(
1− q−t+τ

)
as long as B`

−t < B̃.

Notice that B`
−1 = B? +

(
1− 1

q

)(
B̃ −B?

)
= Bu

0 . Hence, the following corollary is

immediate:

Corollary 4. Let B0 = Bu
0 . The solution to (31)

Bu
−t = B̃ − q−t

(
B̃ −B0

)
+
β

q
(B−t+1 −B?) , ∀t ≥ 1

is:

Bu
−t = B? +

(
B̃ −B?

) t∑
τ=0

γτ
(
1− q−t+τ

)
= B`

−t−1.

where γ ≡ β/q.

This sequences
{
B`
−t
}

and
{
Bu
−t
}

characterizes the boundary of the sets B−t such

that B−t ∈ B−t, for t ≥ 0. To see this, note that because Bu
t = B`

−t−1, the sequence of

intervals:

B−t ≡ (B`
−t, B

`
−t−1] ∩

[
0, B̃ss

]
, t ∈ {0, T} ,

where,

B`
−t ≡ B? +

(
B̃ −B?

)
Γ(t).

form ∪Tt=0B−t = (B?, B̃ss]. Finally, observe that any B−t given by (31) is monotonically

increasing in B−t−1. Hence, any B−t ∈ B−t.
The summation term:

t−1∑
τ=0

γτ
(
1− q−t+τ

)
=

1− γt

1− γ
− q−t1− β

t

1− β
.

Define:

Γ (t) ≡ 1− γt

1− γ
− q−t1− β

t

1− β
.
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I use this function to find T . The term, B`
−t ∈ (B?, B̃] if and only if Γ (t) < 1. Hence, the

last t for which (B`
−t, B

`
−t−1] ∩

[
0, B̃ss

]
6= ∅, satisfies:

Γ(t) ≡ 1− γt

1− γ
− q−t1− β

t

1− β
< 1 <

1− γt+1

1− γ
− q−t+1 1− βt+1

1− β
= Γ (t+ 1) . (32)

Indeed, tThere is a unique integer T that satisfies the condition. To see this, note that

for Γ(1) = 1 − q−1 < 1, but limt→∞ Γ (t) = 1/ (1− γ) > 1. In turn, the function is

increasing in t. Since there is a unique positive integer T that satisfies the condition

above, there is a maximum interval B−T = (B−T , B̃] that satisfies the Euler equation in

(B?, B̃]. Naturally, B−t, for t {0, 1, ..., T} defines a partition of
[
B?, B̃

]
.

The implication of the Lemma above is that any deleveraging sequence that con-

verges to B?, that at some point crosses (B?, B̃], satisfies the property that each point

of the sequence B−t for t {0, 1, ..., T}, falls in in the corresponding interval B−t. In turn,

there are at most a finite number T of such intervals. For any t, B−t reaches B0 in t

periods and B? in t+ 1 periods.

Next, I show an analogue Proposition for debt levels below B̃.

Proposition 13. Let T , andB`
−T be given by Proposition 12. Any decreasing sequenceB−t

for t ∈ {0,∞}, that satisfies the worker’s Euler equation, (13), with terminal condition

B0 ∈ B0, satisfies that

B−T−τ ∈
[
B`
−T−τ , B

r
−T−τ

]
, ∀τ ≥ 1. (33)

where

B`
−T−τ ≡

(
1− q−T

(
B̃ −B?

))
1− β

+ βτ

B`
−T −

(
1− q−T

(
B̃ −B?

))
1− β

 ,

and

Br
−T−τ ≡

(
1− q−T

(
B̃ −B?

))
1− β

+ βτ

B`
−T−1 −

(
1− q−T

(
B̃ −B?

))
1− β

 ,
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Proof. Consider the sets:

B−T =
[
B`
−T , B̃

]
and B̃−T = (B̃, B`

−T−1],

where

B`
−T−1 ≡ B? +

(
B̃ −B?

)
Γ (T + 1) .

These are the sets of values of B that for which B′ ∈ B−T+1, by using the Euler equation

(27). Both sets have the property that, if we follow the Euler equation (27) and B′ ∈[
B?, B̃

]
, for any B ∈

[
B`
−T , B

`
−T−1

]
, then B′ ∈ B−T+1.

The next step is to continue backwards in time. At this point we work out the tran-

sition starting from debt in B−T and B̃−T . The reason is debt levels in each interval, are

reached using a different Euler equation at period−T−1. We characterize the sequence

of sets B−T−τ and B̃−T−τ for τ ≥ 1.

Derivation of the sets B−T−τ . Fix a debt level B−T ∈ B−T and an associated consump-

tion level C (B−T ). This debt level is reached starting from a debt level B−T−1 > B̃, if it

satisfies the budget equation:

qC−T−1 = C−T (34)

and

C−T−τ = C−T−τ+1, ∀t ≥ 1, (35)

using the terminal condition, C−T = C (B−T ) .

Using the budget constraint, we have that:

C−T−1 =
1

q
(1 + βB−T −B−T−1) ,

so combined with (34) and the terminal condition, we obtain:

B−T−1 = 1 + βB−T − C (B−T ) , ∀B−T ∈ B−T .

We already showed, by using the Euler equation backwards, that B̃ < B`
−T−1 ≤

B−T−1. Thus, for any B−T ∈ B−T , we obtain a new value of debt B−T−1 > B̃. Hence,
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I define an interval of terminal conditions:

B−T−1 = L (B′) ≡ B = 1 + βB′ − C (B′) , B′ ∈ B−T .

I now use (35), backwards in time.

If B−T−1 < B̃, then B−T−1 can be reached if it satisfies the Euler equation:

C−T−2 = C−T−1 →
1

q
(1 + βB−T−1 −B−T−2) =

1

q
(1 + βB−T −B−T−1) , (36)

where I used that ifB−T−1, B−T−2 < B̃ the worker’s consumption is exclusively in chained

goods.

Re-arranging terms in (36), we obtain:

B−T−2 = (1 + β)B−T−1 − βB−T .

Generically, using (35):

C−T−τ = C−T−τ−1 →
1

q
(1 + βB−T−τ−1 −B−T−τ−2) =

1

q
(1 + βB−T−τ −B−T−τ−1) ,

and likewise:

B−T−τ−2 = (1 + β)B−T−τ−1 − βB−T−τ

= B−T−τ−1 + β (B−T−τ−1 −B−T−τ ) .

Then, subtracting B−T−τ+1 from both sides we arrive at:

B−T−τ−2 −B−T−τ−1 = β (B−T−τ−1 −B−T−τ ) .

Thus, by iterating forward τ times:

B−T−τ−2 −B−T−τ−1 = βτ+1 (B−T−1 −B−T ) .
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two periods forward:

B−T−τ −B−T−τ+1 = βτ−1 (B−T−1 −B−T ) , ∀τ ≥ 1.

Summing up all the differences up to τ , we obtain:

B−T−τ −B−T =
τ∑
s=1

βs−1 (B−T−1 −B−T ) .

Setting τ →∞, we obtain:

B−T−τ = B−T +
1

1− β
(B−T−1 −B−T ) .

Thus, the sets

B−T−τ ≡

{
B−T−τ : B−T−τ = B−T +

τ−1∑
s=0

βs (1− C (B−T )− (1− β)B−T ) , B−T ∈ B−T

}

=

{
B−T−τ : B−T−τ = βτB−T +

1− βτ

1− β
(1− C (B−T )) , B−T ∈ B−T

}
,

where I used B−T−1 = 1 + βB−T − qC (B−T−1) = 1 + βB−T − C (B−T ) .

These sets characterize the set of value ofB−T−τ that reach a pointB−T inB−T , using

the Euler equation. Taking the limit:

lim
t→∞
B−T−τ ≡

{
1

1− β
(1− C (B−T )) , B−T ∈ B−T

}
.

We also have that:

inf B−T−τ = βτB−T+
1− βτ

1− β

(
1− inf

B−T∈B−T
C (B−T )

)
= βτB−T+

1− βτ

1− β

1−

(
B̃ −B?

)
qT

 ,

and

inf B−T−1 = B`
−T−1.

Moreover:
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maxB−T−τ = βτB−T +
1− βτ

1− β

1−
C
(
B̃−T

)
qT

 .

thus, showing the continuity of the interval.

Derivation of the sets B̃−T−τ . Now consider the set, B̃−T . Fix a debt level B−T ∈ B̃−T
and an associated consumption level C (B−T ). This debt level is reached starting from

a debt level B−T−1 > B̃, if it satisfies the budget equation:

C−T−τ = C−T−τ+1, ∀t ≥ 0, (37)

using the terminal condition, C−T = C (B−T ) .

Using the budget constraint,

C−T−τ =
1

q
(1 + βB−τ+1 −B−T−τ ) ,

so combined with (37) we obtain:

1

q
(1 + βB−T−τ−1 −B−T−τ−2) =

1

q
(1 + βB−T−τ −B−T−τ−1) ,

and likewise:

B−T−τ−2 = B−T−τ−1 + β (B−T−τ−1 −B−T−τ ) .

Then, subtracting B−T−τ+1 from both sides we arrive at:

B−T−τ−2 −B−T−τ−1 = β (B−T−τ−1 −B−T−τ ) .

Thus, by iterating forward τ times:

B−T−τ−2 −B−T−τ−1 = βτ+1 (B−T−1 −B−T ) .
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By change of variables:

B−T−τ −B−T−τ+1 = βτ−1 (B−T−1 −B−T ) , ∀τ ≥ 1.

where

B−T−1 = 1 + βB−T − qC (B−T ) , ∀B−T ∈ B̃−T .

Summing up all the differences up to τ , we obtain:

B−T−τ −B−T =
τ∑
s=1

βs−1 (B−T−1 −B−T ) .

Solving the summation term:

B−T−τ = B−T +
1− βτ+1

1− β
(B−T−1 −B−T ) .

Thus, we obtain the sets:

B̃−T−τ ≡

{
B−T−τ : B−T +

τ−1∑
s=0

βs (1− qC (B−T )− (1− β)B−T ) , B−T ∈ B̃−T

}
,

=

{
B−T−τ : βτB−T +

1− βτ

1− β
(1− qC (B−T )) , B−T ∈ B̃−T

}
.

where I used that B−T−1 = 1 + βB−T − qC (B−T ) .

Setting τ → ∞, we obtain:These sets characterize the set of value of B−T−τ that

reach a point B−T in B̃−T , using the Euler equation. Taking the limit:

lim
t→∞
B̃−T−τ ≡

{
B−T−τ :

1

1− β
(1− qC (B−T )) , B−T ∈ B̃−T

}
.

We also have that:

max B̃−T−τ = βτB−T +
1− βτ

1− β

1− q max
B−T∈B̃−T

C (B−T )

(
B̃ −B?

)
qT


= βτB−T +

1− βτ

1− β

1−

(
B̃ −B?

)
qT

 ,
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and, thus,

max B̃−T−1 = B`
−T−1.

Moreover, we have that:

inf B̃−T−τ = βτB−T +
1− βτ

1− β

(
1− q inf

B−T∈B̃−T
C (B−T )

)
= βτB−T +

1− βτ

1− β

(
1− qC

(
B̃
))

.

Thus, all sets B̃−T−τ and B−T−τ overlap.

We are now ready to proof the statements of the Proposition.

Proof of Part II.a. I now proceed to proof Part II of the Proposition. I begin by show-

ing the following Lemma regarding the optimal policies for initial values of debt, B0 ∈
(B?, B̃]:

Lemma 11. For any B ∈ (B?, B̃], we have have V (B) > V (B), B′ ≤ B and Bt → B?

where the convergence occurs in at most T + 1 periods.

Proof. The proof proceeds in three steps. First, using the Euler equation, I show that

the value function satisfies V (B) > V (B). Second, I show that if the Euler equation

holds, debt cannot exit the interval exceeding the upper bound. Finally, debt must exit

the interval from below.

Step 1. Consider first the interval B ∈
[
B?
(
B̃
)
, B̃
]

. By Proposition 4, in the main

text we have that:

C (B′)

C (B)
= βR

qE
(
B′, B̃

)
qB
(
B′, B̃

) =
1 + (q − 1) I[B′≥B?(B̃)]

1 + (q − 1) I[B′>B̃]
= q > 1. (38)

Clearly, if Ew = 1 − (1− β)B then B′ = B and C (B) = C (B′), which contradicts the

condition above, (38). Since B′ = B̃ is a sub-optimal debt policy in B ∈
[
B?
(
B̃
)
, B̃
]

that coincided with the optimal policy of V
(
B̃
)

, then V
(
B̃
)
> V

(
B̃
)

.

Step 2. Next, I verify that if B ∈ (B?, B̃], then B must exit the interval (from below)

at some finite time. Assume, by contradiction, thatBt never exits the interval. Then, by
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(38), we would have that:

lim
t→∞

Ct
C0

= lim
t→∞

qt =∞,

hence, a contradiction. Thus, there must exist a finite timeT after whichB exits
[
B?, B̃

]
.

Suppose, by false assumption, that Bt exits to the right of B̃. Then, there exists a

largest finite time T such that B remains in the interval and B, but exits from above at

T + 1. If debt exits the interval from above, from T + 1 onwards, consumption and debt

must be constant:

Ct = Ct+1 and Bt = Bt+1 t ≥ T.

Constant consumption must hold, because the Euler equation for B > B̃ requires so.

Constant consumption does not imply constant debt in general. However, a constant

debt path must follow because debt increases at T , so is not feasible to have constant

consumption and return to the interval (given higher average prices for larger debt).

Thus, either debt explodes (which is unfeasible) or debt must be constant.

Constant debt requires:

Ew
T+1 = 1− (1− β)BT+1. (39)

From the arguments above, there must exist an optimal sequence of consumption such

that:

C0 < C1 = qC0 < C2 = q2C0 . . . < CT = qTC0 = CT+1 = CT+2 = CT+3...

Since by, false assumption, the sequence of debt is increasing, it must be that:

Ew
0 > 1− (1− β)B0.

which implies

Ew
T+1 > qTEw

0 > Ew
0 > 1− (1− β)B0, (40)

where the first inequality comes from:

Ew
T+1 =QT+1CT+1 = QT+1q

TC0 =
QT+1

Q0

qTEw
0 ,
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whereQT+1 > Q0 (spot consumption is lower for higher debt levels if overall consump-

tion is fixed). However, combining (39) and (40), we have thatBT+1 < B0 which contra-

dicts the stated assumption that Bt exits the interval from above.

Step 3. SinceBt does not exit the interval exceeding the upper bound, it must exit the

interval from below. Moreover, debt remains in the interval a finite amount of periods,

T . Furthermore, we have that for Bt = BT+1, for t ≥ T + 1. There are two possibilities,

either

BT+1 = B? or BT+1 < B?.

Consider Proposition 4. Assume BT+1 < B?. Then, the Euler condition is:

Ew
T+1

Ew
T

QT

QT+1

= β
Rt+1

ΠT+1 (BT+1)
→

Ew
t+1

Ew
t

=
1

QT

< 1,

where I used the definition of Πt+1:

ΠT+1 (BT+1) ≡ q̃BT+1 (BT+1) /q̃ET (BT+1) =
1 + (q − 1) I[B′>B̃ss]

1 + (q − 1) I[B′≥B?(B̃ss)]
= 1.

and that Qt > QT+1 = 1. However, this leads to a contradiction because:

Ew
t+1

Ew
t

=
1− (1− β)BT+1

1−BT + βBT+1

> 1 if BT+1 < BT .

Thus, the only possibility is that B′ exits the interval reaching B?
(
B̃
)

in finite time.

For this, we must verify the inequality in Proposition 4. By Proposition 11, this condi-

tion is verified if BT ∈ B0. If in turn, BT 6∈ B0, then T is not final exit time. Instead,

according to Proposition 12, there exists a sequence of Bt that exits the interval reach-

ing B? in t > T . In either case, it must be the case that Bt exits from below and reaches

B?, as stated by the Proposition.

Proof of Part II.b. I now proceed to proof Part II.b of the Proposition. First we show

the following corollary to Proposition 13.
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Corollary 5. There exists a maximal debt level

B =
1− q−T (1− (1− β)B?)

1− β
,

such that deleveraging towardB?, while following the Euler equation (27) is not feasible.

Proof. Recall that B̃−T−τ ∪B−T−τ represents the set of values where there is a deleverag-

ing path such that debt reaches B? in T + τ + 1 periods. In all cases, the Euler equation

(38) is satisfied. From (33), we have that

B ≡ lim
t→∞
B̃−T−τ ∪ B−T−τ =

1− q−T

1− β
(1− (1− β)B?) .

The debt threshold B defines a maximally high debt level for which deleveraging in

finite time is not possible while respecting the Euler equations.

Existence of Bh. Thus, from this Corollary we have that for values of debt above the

threshold B, the policy B′ = B, is the only solution consistent with the Euler equation.

We have:

Corollary 6. For any B ≥ B, we have V (B) = V (B).

Thus, we know that V
(
B̃
)
> B

(
B̃
)

while V (B) = V (B). By continuity of V , there

exists some Bh ∈
[
B̃,B

]
such that V (B) = V (B), for any B > Bh.

Uniqueness ofBh. Next, we show uniqueness. Fix anyBd > B̃ such that V
(
Bd
)

¿V
(
Bd
)

.

If this condition holds, then Bd ∈ B̃−T−τ ∪ B−T−τ for some finite τ ≥ 1. Then, opening

up the value and using the results from (33), we obtain:

V
(
Bd
)

=
1− βτ+1

1− β
ln

(
1

qT+1
C (B−T )

)
+ βτ

T∑
s=1

βs ln

(
qs

qT+1
C (B−T )

)
...

+ βT+τ+1 ln (1− (1− β)B?)

1− β
...

>
ln
(

1−(1−β)Bd

q

)
1− β

= V
(
Bd
)
.
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for some sequence such that B−t ∈ B−t.
Then, for any B < Bd define ∆ ≡ Bd −B. We have that:

V (B) =
v
(

1−(1−β)Bd+∆(1−β)
q

)
1− β

.

A feasible policy is to consume the annuity of ∆ in chained goods, and follow the same

deleveraging path as the path that deliver V (B):

V
(
Bd + ∆

)
>

τ∑
s=0

βτ ln

(
1

qT+1
C (B−T ) +

∆ (1− β)

q

)
+ βτ

T∑
s=1

βs ln

(
qs

qT+1
C (B−T ) +

∆ (1− β)

q

)
+

∞∑
s=T+τ+1

βs ln

(
1− (1− β)B? +

∆ (1− β)

q

)
.

Since ln exhibits decreasing absolute risk-aversion, we thus have:

V
(
Bd + ∆

)
− V

(
Bd + ∆

)
> 0,

for any ∆. This guarantees that there exists a unique minimal value Bh for which

V
(
Bh
)

= V
(
Bh
)

. This completes the proof of Proposition 5.

B.4 Proof of Proposition 6

For convenience, I reproduce the aggregate Euler equation (15) here:

B

1− (1− β)B
·Q
(
B, B̃

)
︸ ︷︷ ︸

≡E(B;B̃)

=
B′

1− (1− β)B′

Q
(
B′, B̃′

)
Π
(
B′;B, B̃, B̃′

)
︸ ︷︷ ︸

≡E ′(B′;B,B̃,B̃′)

.

First, I show that for a subset of B > B̃′ there are two roots B′ that solve E = E ′. The

roots satisfyB′1 < B̃′ < B′2 andB′2 = B thusR = β−1 and q = q′. Then, the proof finishes

by show that do to the hysteresis result of stationary problems, for each B ∈
(
B̃′, Bh

)
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the larger root B′2 cannot be an individual optimum during a transition.

The first result is summarized by the following Lemma.

Lemma 12. There exists a threshold B∗ such that for any B ∈ [B̃′, B∗], the equation

E = E ′ has two roots B′: one root is B = B′ and the other satisfies B′ ≤ B̃′. For any

B > B∗, only B = B′ is a solution. B∗ solves:

E ′
(
B∗; B̃, B̃, B̃′

)
= lim

B′↑B̃′
E ′
(
B′; B̃, B̃, B̃′

)
.

The interpretation ofB∗ is obtained from the left panel of Figure 4. B∗ is the highest

value for which the Euler equation has a solution B′ ∈ (B̃′, B∗).

Proof. Since B̃′ > B̃, if B′ = B > B̃′, the worker only spends chained expenditures.

Thus,

Π
(
B′;B, B̃, B̃′

)
= 1 and Q

(
B, B̃

)
= Q

(
B′, B̃′

)
= q (1− (1− β)B) .

Hence, B′ = B is always a solution to the Euler equation when B′ = B > B̃′.

LetB > B∗. The function E
(
B; B̃

)
is monotone increasing. The function E ′

(
B′;B, B̃, B̃′

)
is monotone increasing to the left of B̃′. Hence, for B > B∗ a solution must lie at

B′ > B̃′. However, for any B′ > B̃′ ,

E ′
(
B′; B̃, B̃, B̃′

)
=

B′

1− (1− β)B′
q (1− (1− β)B′)

which follows from the fact thatB′ > B̃′ > B?
(

1/β, B̃′
)

in which case Π
(
B′;B, B̃, B̃′

)
=

1. This implies that for any B > B∗ we have that:

E
(
B; B̃

)
= E ′

(
B′;B, B̃, B̃′

)
→ B

1− (1− β)B
·q (1− (1− β)B) =

B′

1− (1− β)B′
·q (1− (1− β)B′)

By monotonicity, we immediately conclude that B = B′ and that is the only solution.

Now consider B ∈
(
B̃′, B∗

)
. We now look for a solution B′ ∈

(
B?(B̃′), B̃′

)
. If B <

B∗, again by monotonicity:

E ′
(
B; B̃, B̃, B̃′

)
< lim

B′↑B̃′
E ′
(
B′; B̃, B̃, B̃′

)
.
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E
(
B; B̃

)
= E ′

(
B′;B, B̃, B̃′

)
E ′
(
B′; B̃, B̃, B̃′

)
= lim

B′↓B̃′
E ′
(
B′; B̃, B̃, B̃′

)
B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B′

1− (1− β)B′
·

q
(

1− (1− β) B̃′
)

limB′↑B̃′ Π
(
B′; B̃, B̃, B̃′

)
B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B̃′

1− (1− β) B̃′
·
q
(

1− (1− β) B̃′
)

q(1−(1−β)B̃′)
q(1−(1−β)B̃)

B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B̃′

1− (1− β) B̃′
· q
(

1− (1− β) B̃
)
> 0

Fix B̃, B̃′. Define B∗ > B̃ to be the value that solves:

E ′
(
B∗; B̃, B̃, B̃′

)
= lim

B′↑B̃′
E ′
(
B′; B̃, B̃, B̃′

)
.

By definition, if indeed B∗ > B̃, then

B∗

1− (1− β)B∗
· q (1− (1− β)B∗) = lim

B′↑B̃′

B′

1− (1− β)B′
·

Q
(
B′, B̃′

)
Π
(
B′;B∗, B̃, B̃′

)
which implies

B∗ =
B̃′

1−(1−β)B̃′

q(1−(1−β)B̃′)
+ (1− β) B̃′

=
B̃′

Cw
(
B̃′, B̃′

)
+ Cs

(
B̃′
) > B̃′.

The last inequality verifies that B∗ > B̃′. This result follows from

lim
B′↑B̃′

Π
(
B′;B∗, B̃, B̃′

)
= (q (1− (1− β)B∗))−1 and lim

B′↑B̃′
Q
(
B′, B̃′

)
= q

(
1− (1− β) B̃′

)
.

The inequality holds since q > 1. Furthermore, this satisfies B∗ > B̃ as required since

the SBL sequence is weakly increasing.28

28This is important because the relevant points to study are those for which the all chained equilibrium
is possible. These are the cases where B∗ > B̃′ ≥ B̃.
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Next, I show that for any B ∈
(
B̃′, B∗

)
, the equation E = E ′ has two roots; one

above B̃′ and one below. The solution above B̃′ is trivial: B = B′ > B̃′ ≥ B̃ satisfies the

equation. For the solution below, I use continuity and monotonicity to show that there

is a unique B′ < B̃′ such that

E ′
(
B′; B̃, B̃, B̃′

)
= lim

B′↓B̃′
E ′
(
B′; B̃, B̃, B̃′

)
B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B′

1− (1− β)B′
·

q
(

1− (1− β) B̃′
)

limB′↑B̃′ Π
(
B′; B̃, B̃, B̃′

)
B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B̃′

1− (1− β) B̃′
·
q
(

1− (1− β) B̃′
)

q(1−(1−β)B̃′)
q(1−(1−β)B̃)

B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B̃′

1− (1− β) B̃′
· q
(

1− (1− β) B̃
)
> 0

Lets call this B′, B and think of the interval
(
B̃′, B∗

)
. The interpretation of B is that it

is the small root for the debt level “B̃′ + ε”. Meaning, if B̃′ is the small root for B∗(the

end of the interval) then B is the small root for the start of the interval. Now, notice

that the RHS is a constant with respect to B̃′. To establish existence of B further notice

that the LHS tends to limB′↑B̃′ E ′
(
B′;B∗, B̃, B̃′

)
as B′ ↑ B̃′ (this was shown in the previ-

ous step) and this is larger than the RHS just by comparing magnitudes (B̃′ ≥ B̃ and

q (1− (1− β)B∗) > 1). Then notice that as B′ ↓ 0 the LHS goes to zero which is lower

than the RHS. By continuity of the LHS we can apply the intermediate value theorem

for existence. Uniqueness is granted since the LHS is increasing in B′. The fraction is

clearly increasing in B′, the average price too because as B′ ↑ B̃′ the share of chained

expenditure increases and also its price does so. This statement also uses the fact that

Q is the weighted harmonic mean of prices with expenditure weights. Since the LHS is

continuous and increasing it maps the interval
(
B, B̃′

)
onto

(
lim
B′↓B̃′

E ′
(
B′; B̃, B̃, B̃′

)
, lim
B′↑B∗

E ′
(
B′; B̃, B̃, B̃′

))
.

So (since E ′ is increasing and continuous) it covers all the image of
(
B̃′, B∗

)
. This
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proves that for B ∈
(
B̃′, B∗

)
there exist two roots that solve E = E ′. One is B′2 = B > B̃′

and the other is a B′1 ∈
(
B, B̃′

)
.

To make affairs clearer, suppose that B∗ < Bh then for all B ∈
(
B̃′, B∗

)
the larger

root B′ = B is not an equilibrium and there is a region
(
B∗, Bh

)
that does not have

a symmetric competitive equilibrium because the only root that solves equation (15)

provides allocations and prices that are not an equilibrium. Now suppose that B∗ >

Bh, then for B ∈
(
B̃′, Bh

)
the larger root B′ = B is not an equilibrium and for B ∈(

Bh, B
)

. So summarizing both cases. For B0 < Bh
(
B̃0

)
, if a (symmetric competitive)

equilibrium exists then it is given by the smaller root of equation 15.

B.5 Proof of Corollary 1

At Bt ≤ B?
(
β−1, B̃ss

)
if R = β−1 then marginal and average prices are equal to 1. Then

it is evident that Bt+1 = Bt solves equation 15 and the expenditure is 1 − (1− β)Bt ≤
B̃ss −Bt by assumption. As a consequence, the steady state is non-disrupted.

B.6 Proof of Corollary 2

That Bt+1 < Bt if Bt ∈
(
B̃, B∗

(
B̃
))

is immediate from the result proved in Proposition

6 since we are choosing the smaller root and the larger root is Bt+1 = Bt. For Bt > B? it

is enough to show that βRt+1 < 1. This was done in step 3 of the proof of Proposition 6.

B.7 Proof of Corollary 3

The proof follows immediately from Proposition 5. If B0 > Bh, there exists an equilib-

rium with Rt = 1/β and Bt = B0. Recall that if Rt = 1/β, and Bt = Bt+1 is a solution to

Et = Et+1. Since for Rt = 1/β, B0 = Bt is a solution to the worker’s problem, both Euler

equations are satisfied and the asset clearing condition holds, sequences withRt = 1/β
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and Bt = B0 are consistent with the equilibrium definition. Since at Bt > Bh > B?,

qt > 1. Hence, the economy remains permanently disrupted.
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C. Proofs of Section 4

C.1 Proof of Proposition 7

The strategy of the proof is to show that any solution to the Ramsey Problem satisfies

the constraints in the Primal Problem (step 1), that solutions respect the optimal ex-

penditure rules, and, finally, that any solution to the Primal Problem can be induced by

a proper tax sequence
{
τ kt+1, τ

c
t , τ

`
t+1

}
t≥0

(step 2).

Step 1. The constraint set in Primal Problem contains constraints in Ramsey Prob-

lem. Take the household budget constraints and the government budget in the origi-

nal Ramsey Problem:

(
1 + τ kt+1

) Bt+1

Rt+1

+ (1 + τ ct )Cs
t = Bt, ∀t ≥0

Bt + (1 + τ ct ) (Swt + qtX
w
t ) =

Bt+1

Rt+1

+ 1− τ `t+1, ∀t ≥0

and

τ kt+1

Bt+1

Rt+1

+ τ ct (Cs
t + Cw

t ) + τ `t+1 = 0, ∀t ≥0.

If we add the first two constraints and cancel common terms, we obtain:

(1 + τ ct ) (Swt + qtX
w
t ) + τ kt+1

Bt+1

Rt+1

+ (1 + τ ct )Cs
t = 1− τ `t+1.

If we then subtract the government budget constraint from this last equation, we ob-

tain:

−
(
τ kt+1

Bt+1

Rt+1

+ τ ct (Cs
t + Swt + qtX

w
t ) + τ `t

)
+(1 + τ ct ) (Swt + qtX

w
t )+τ kt+1

Bt+1

Rt+1

+(1 + τ ct )Cs
t = 1−τ `t+1.

Cancelling terms, this condition further becomes:

Swt + qtX
w
t + Cs

t = 1. (41)
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Finally, using qt = A (µt)
−1, we obtain:

Swt +A (µt)
−1Xw

t + Cs
t = 1 and µt = A (µt)

−1Xw
t .

This shows that any solution to the Ramsey Problem satisfies the constraints of the

Primal Problem.

Step 2. The Ramsey Planner can implement the Primal Problem Solution. Next,

observe that for any choice of Cw
t in the Primal Problem, the Primal Planner is better

off maximizing Swt sinceA (µt)
−1 ≥ 1. Hence, it must be the case that:

Swt = min
{

max
{
B̃t −Bt, 0

}
, 1− Cs

t

}
.

Then, by definition:

Xw
t = Ew

t −min
{

max
{
B̃t −Bt, 0

}
, 1− Cs

t

}
/qt.

In this expression, I used thatEw
t = 1−Cs

t exploiting the expenditure-income—equation

(41). Since both the Ramsey and the Primal problems induce the same level of con-

sumption for workers given a level of saver consumption, the value of both problems

coincides if they can induce the same set of saver consumption paths.

In the primal problem, I use that

Cs
t = (1− β)Bt.

Thus, since the planner in the Primal Problem can choose the path of debt directly, it

can chose saver expenditures as well. Since the constraint set in the Primal is a subset

of the constraint in the Ramsey problem, the primal problem is more relaxed than the

original Ramsey problem. Hence, If the Ramsey planner can achieve the same level of

saver expenditures as the Primal planner, then, it must achieve the same value. The

next Lemma is used to verify that claim.

Lemma 13. Let
{
τ kt+1, τ

c
t , τ

`
t+1

}
t≥0

be a sequence of taxes in the Ramsey Problem. The
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solution to the saver’s problem is given by:

Cs
t = (1− β)Bo

t

where

Bo
0 =

B0

(1 + τ c0)

Bo
t+1 = R̂t+kβB

o
t

and

R̂t+k ≡
Rt+1(

1 + τ kt+1

) 1(
1 + τ ct+1

)
/ (1 + τ ct )

.

This Lemma is the solution to the saver’s problem. The Lemma implies that any

sequence of solutions to the Primal Problem can be reproduced by the the Ramsey

Planner.

Indeed, let {Bo
t }t≥0 be a solution to the primal problem. Then, the Ramsey planner

can set

(1 + τ c0) = B0/B
o
0

and set the sequence of taxes
{
τ kt+1, τ

c
t , τ

`
t+1

}
to satisfy,

Bo
t+1

Bo
t

= β
Rt+1(

1 + τ kt+1

) 1(
1 + τ ct+1

)
/ (1 + τ ct )

,

given the equilibrium rate Rt+1 induced by his solution. This equilibrium has to be

found to provide an actual implementation. Recall from the previous step that once we

determine the saver’s consumption path, we have the worker’s expenditures. Hence,

we are free to treat Cw, Sw, µ. and Cw, as functions of B in the Primal and Ramsey

problems (assuming that both problems produce the same path of Bo
t ) as we do in the

problem without taxes in the main text:

Sw
(
B, B̃

)
≡ min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
,

µ
(
B, B̃

)
≡ 1− (1− β)B − Sw

(
B, B̃

)
,

Xw
(
B, B̃

)
≡ A

(
µ
(
B, B̃

))(
1− (1− β)B − Sw

(
B, B̃

))
,



54

and

Cw
(
B, B̃

)
= Xw

(
B, B̃

)
+ Sw

(
B, B̃

)
.

Recall that the Ramsey planner must satisfies the two household Euler equations:

Cs
t+1

Cs
t

1

β

[
1 + τ ct+1

1 + τ ct

] (
1 + τ kt

)
= Rt+1 (42)

and for the worker, at continuity points,

Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

][
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt>0]

]
= Rt+1, (43)

where I express the indicators as a function of consumption since these conditions are

equivalent to the ones in the main text and, likewise, I work directly with consumption.

I verify below, in the solution to the Primal Planner’s Problem, that the planner never

chooses Bo
t = B̃t but may chose Bo

t = B?
t . Thus, the worker’s Euler equation must

satisfy:

lim
Bot ↑B?t

Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

] [
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt>0]

]
< Rt+1,

and

lim
Bot ↓B?t

Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

][
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt>0]

]
≥ Rt+1.

The numerator is the same in both cases, it equals 1, in the neighborhood of B?
t . If the

worker’s Euler equation holds with equality in the limit from aboveB?
t , we immediately

verify that the inequality holds in the limit from below:

lim
Bot ↓B?t

1 +
(
A (µt)

−1 − 1
)
I[Xt>0] = δ−1 < 0 = lim

Bot ↑B?t
1 +

(
A (µt)

−1 − 1
)
I[Xt>0].

Hence, we are free to substitute the the strict inequality in the denominator for an

equality:
Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

][
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt≥0]

]
= Rt+1.

I use this modified Euler equation in the rest of the proof.

Substituting out
[

1+τct
1+τct+1

]
βRt+1 from both (42) and (43), and replacing the saver’s
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optimal expenditures, we obtain:

(
1 + τ kt

)
=

Cs
t

Cs
t+1

Cw
t+1

(
Bt+1, B̃t+1

)
Cw
t

(
Bt, B̃t

)
1 +

(
A
(
µ
(
Bt+1, B̃t+1

))−1

− 1

)
I[Sw(Bt+1,B̃t+1)=0]

1 +

(
A
(
µ
(
Bt, B̃t

))−1

− 1

)
I[Xt≥0]

 .
We can treat the solution of this equation as a function mapping the sequence of solu-

tions in the Primal Planner to the Ramsey planner:

τ k
(
B,B′, B̃, B̃′

)
=
B

B′
1− (1− β)B

1− (1− β)B′

Q
(
B′, B̃′

)
Q
(
B, B̃

)
1 +

(
A
(
µ
(
B′, B̃′

))−1

− 1

)
I[Sw(B′,B̃′)=0]

1 +

(
A
(
µ
(
B, B̃

))−1

− 1

)
I[Xt≥0]

− 1.

(44)

As long as we have the sequence of debt obtained from the Primal Problem, we obtain

a mapping from this solution to the sequence of capital taxes.

The equilibrium rate is deduced from (42),

Rt+1 =

[
1 + τ ct+1

1 + τ ct

]
Bo
t+1

Bo
t

1

β

(
1 + τ k

(
Bo
t , B

o
t+1, B̃t, B̃t+1

))
.

Hence, other than for time zero, expenditure taxes are indeterminate. Indeed, any se-

quence of expenditure taxes satisfies the saver’s budget equation. If we substitute (42)

into the saver budget constraint to obtain:

Cs
t

Cs
t+1

β

[
1 + τ ct

1 + τ ct+1

]
Bt+1 + (1 + τ ct )Cs

t = Bt.

Using that Cs
t = (1− β)Bo

t and that the debt induced by the Ramsey solution must

satisfy Bt = Bo
t / (1 + τ ct ), the budget constraint is verified.

Since there are multiple paths for expenditure taxes and labor income taxes, the

only condition need is that they jointly satisfy the government budget constraint. Re-
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placing the results above, we obtain that any sequence
{
τ ct , τ

`
t+1

}
that satisfies:

τ k
(
Bo
t , B

o
t+1, B̃t, B̃t+1

)
1 + τ k

(
Bo
t , B

o
t+1, B̃t, B̃t+1

) [ 1 + τ ct
1 + τ ct+1

]
βBo

t +τ ct

(1− β)Bo
t +

1− (1− β)Bo
t

Q
(
Bo
t , B̃t

)
+τ `t+1 = 0,

implements the Primal Planner allocation. For an implementation where τ ct = 0, ∀t ≥
1, Hence, we have:

τ `t = −
τ k
(
Bo
t , B

o
t+1, B̃t, B̃t+1

)
1 + τ k

(
Bo
t , B

o
t+1, B̃t, B̃t+1

)βBo
t ,

also implements the solution.

C.1.1 Auxiliary Proofs

Proof of Lemma 13. To proof the result, I solve the saver’s problem for an arbitrary

sequence of taxes:

Problem 9. The saver’s problem with taxes is:

Vt =
∑
t≥0

βt log (Ct)

subject to:
(
1 + τ kt+1

)
R−1
t+1Bt+1 + (1 + τ ct )Ct = Bt, with B0 given.

Dividing both sides of the budget constraint by 1 + τ ct and multiplying and dividing

by
(
1 + τ ct+1

)
in the first term, we obtain:

(
1 + τ kt+1

) Bt+1

Rt+1 (1 + τ ct )

(
1 + τ ct+1

)(
1 + τ ct+1

) + Ct =
Bt

(1 + τ ct )
.

I introduce the following change of variable:

Bo
t ≡

Bt

1 + τ ct
.

Using this change of variables, the budget constraint is modified to:

Bo
t+1 = R̂t+k (Bo

t − Ct) ,
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where

R̂t+k ≡
Rt+1(

1 + τ kt+1

) 1(
1 + τ ct+1

)
/ (1 + τ ct )

.

This change of variables implies that the original problem can be reformulated as fol-

lows.

Problem 10. Equivalent problem

Vt =
∑
t≥0

βt log (Ct)

subject to: R̂−1
t+kB

o
t+1 + Ct = Bo

t , where Bo
0 ≡ (1 + τ c0)−1B0.

The solution to this problem is typical of log. Conjecture that:

Vt = V (Bo, t) =
1

1− β
log (D) + v (t) .

We thus have that:

V (Bo, t) = maxC log (C) + β log
(
R̂t+1 (Bo − C)

)
+ βv (t+ 1) .

= maxC log (C) +
β

1− β
log (Bo − C) + β

(
1

1− β
log
(
R̂t+1

)
+ v (t+ 1)

)
.

Taking first-order conditions with respect to C, we obtain:

1

C
=

1

Bo − C
β

1− β
→ C = (1− β)Bo.

We verify the conjecture by replacing the expenditure rule:

V (Bo, t) =
log (Bo)

(1− β)
+

log (1− β)

1− β
+ β

(
1

1− β
log
(
R̂t+1

)
+ v (t+ 1)

)
,

where

v (t) =
log (1− β) + β log

(
R̂t+1

)
1− β

+ βv (t+ 1) .
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C.2 Proof of Proposition 8

I first state Proposition 8 in greater generality than as shown in the main body of the

paper.

Proposition 14. (Solution of the Primal Problem): The solution to the Primal Planner

Problem is given by the solution to the following static problem:

Problem 11.

Pθ
(
B̃
)

= max
B∈[0,B̄]

P
(
B, B̃

)
where

P
(
B, B̃

)
≡
{

(1− θ) log ((1− β)B) + θ log
(
A
(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
and µ

(
B, B̃

)
and Sw

(
B, B̃

)
:

µ
(
B, B̃

)
≡ 1− (1− β)B −min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
Sw
(
B, B̃

)
≡ min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
.

Let the solution to this problem be Bθ. Then, the solution to the primal planner’s

problem is Bt = Bθ
(
B̃t

)
. The function Bθ satisfies:

I. Efficiency Threshold. For B̃ ≥ 1−θβ
1−β , Bθ = Bss. Moreover, for this debt level Xw = 0.

II. Inefficiency Threshold. For B̃ < 1−θβ
1−β the planner’s solution induces TFP losses. The

solution to the Primal Planner’s problem in this region depends on the threshold SBL, B̃e.

II.a Social Insurance and Productive Efficiency. For B̃ ∈
[
B̃i, 1−θβ

1−β

]
, we have that

Bθ = B?
(
B̃
)

:

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) ≤ θ

1− θ
1− βδ
1− β
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II.b Social Insurance and Complements Productive Efficiency. If B̃s < B̃i, for B̃ ∈[
B̃s, B̃i

]
, we have that Bθ = B?

(
B̃
)

if:

1− (1− β)Bθ

(1− β)Bθ
=

θ

1− θ

Q
(
Bθ, B̃

)
q
(
Bθ, B̃

)
q

(
Bθ, B̃

)
− β

(
1 + εAµ

(
µ
(
Bθ, B̃

)))
1− β

 .

Moreover, for this debt level Xw, Sw > 0.

II.c Social Insurance conflicts Productive Efficiency. For B̃ ∈
[
0, B̃s

]
, we have that

Bθ is the unique constant solution Bθ > Bss to the equation:

1− (1− β)Bθ

(1− β)Bθ
=

θ

1− θ
(
1 + εAµ

(
1− (1− β)Bθ

))
.

Moreover, for this debt level Sw = 0.

Threshold value B̃i.

B̃i is the unique solution to:

1− (1− β)B?
(
B̃i
)

(1− β)B?
(
B̃i
) =

θ

1− θ
1− βδ
1− β

Threshold value B̃s. Let Pθ ≡ Pθ (0) and P̄θ ≡ Pθ
(
B̄
)

. The threshold B̃s solves:

Pθ = Pθ +

∫ 1−θβ
1−β

B̃s

(
PB̃ + PB|B=B?(B̃) ·B

?
B̃

(
B̃
))

dB̃.

where for B̃ ∈
[
B̃e, 1−θβ

1−β

]
we have that Pθ

B̃

(
B̃
)

equals:

=
θ

1− (1− β)Bp(B̃)

Q
(
Bp(B̃), B̃

)
q
(
Bp(B̃), B̃

) log
(
A
(
µ
(
Bp(B̃), B̃

))
−
(

1 + εAµ

(
µ
(
Bp(B̃), B̃

))))
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and

PB|B=B?(B̃) =
1− θ

(1− β)B?
(
B̃
) − θ (1− βδ)

1− (1− β)B?
(
B̃
)

To begin the proof, let me start with the Primal Problem in the statement of Proposi-

tion 7. Taking the sequence of borrowing limits
{
B̃t

}
t≥0

, the Primal Planner maximizes:

max
{Bt}t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Xw

t + Swt )] ,

subject to the saver’s budget constraint,

Cs
t = (1− β)Bt, ∀t ≥0,

the income expenditure identity,

1 = µt + Swt + (1− β)Bt,

the spot expenditure constraint,

St ≤ max
{
B̃t −Bt, 0

}
, ∀t ≥0,

and the cost of chained goods,

Xw
t = A (µt)µt,

and subject to µt ∈ [0, 1].

We have that for any Bt, the consumption delivered to the savers is fixed. To maxi-

mize the worker’s utility, we must

max log (Xw
t + Swt )

subject to:

1− (1− β)Bt = µt + Swt

St ≤ max
{
B̃t −Bt, 0

}
Xw
t = A (µt)µt.
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and subject to µt ∈ [0, 1].

The last constraint implies:

Swt ≤ 1− (1− β)Bt.

Hence, the Primal Planner respects the same constraint as the worker:

Swt = min
{

max
{
B̃t −Bt, 0

}
, 1− (1− β)Bt

}
.

Therefore, the expenditures on chained goods are:

µt = 1− (1− β)Bt −min
{

max
{
B̃t −Bt, 0

}
, 1− (1− β)Bt

}
.

Since the the maximization is static, we can solve it state by state as in the statement

of the proposition. Thus, the objective of the Primal Planner is the same as solving the

following problem at each date:

Problem 12. The Primal Planner’s problem is given by:

Pθ
(
B̃
)

= max
B∈[0,B̄]

P
(
B, B̃

)
where

P
(
B, B̃

)
=
{

(1− θ) log ((1− β)B) + θ log
(
A
(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
subject to:

µ
(
B, B̃

)
≡ 1− (1− β)B −min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
Sw
(
B, B̃

)
= min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
.

This is a problem where the planner can distribute wealth at will, but respects the

constraints. Next, I proceed to solve this problem. Naturally, welfare depends on whether

and how the planner may want to distort TFP to provide insurance. There are multiple

policy regimes that depend on the SBL, B̃. I make use of two problems, the best and
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worst value problems:

Pθ ≡ Pθ (0) and P̄θ ≡ Pθ
(
B̄
)
.

Case 1. Values of B̃ such that all consumption is spot. Ideally, the planner wants to

maximize spot consumption and set µ = 0. The unconstrained solution to the Primal

Planner’s problem is given by the ratio of of Pareto weights:

1− (1− β)Bo

(1− β)Bo
=

θ

1− θ
→ Bo =

1− θ
1− β

= Bss.

This yields the same value as P̄θ.
This level of debt must satisfy the condition that all spot consumption must be fea-

sible:

max
{
B̃ −Bo, 0

}
≥ 1− (1− β)Bo > 0.

Thus, we need

B̃ ≥ Bo

and that:

B̃ ≥ 1 + βBo.

Combining both constraints we have:

B̃ ≥ Bo + max {1− (1− β)Bo, 0} .

We know that the optimal debtBo must be less than the natural borrowing limit. Hence,

the inequality is just:

B̃ ≥ 1 + βBo = 1 +
β

1− β
(1− θ) =

1− θβ
1− β

. (45)

Thus, for these levels of the SBL, the planner can achieve the unconstrained solution.

This corresponds to the debt in the efficient steady state level of the competitive equi-

librium that produces the planner’s Pareto weights.
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Case 2. Values of B̃ such that some consumption is chained. Now consider the case

where the constraint binds, B̃ < 1−θβ
1−β . In this case, the planner cannot achieve the

unconstrained solution. The amount of chained expenditures are therefore positive:

µ
(
B, B̃

)
= 1− (1− β)B −min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
> 0.

We have critical values.

• If the planner chooses Bp ≥ Bh

(
B̃
)

= B̃, there is no spot consumption.

• If the planner chooses Bp < Bl

(
B̃
)
< B̃, that there is no chained consumption.

This threshold Bl

(
B̃
)

solves,

max
{
B̃ −Bl, 0

}
= 1− (1− β)Bl

when since Bl < B̃, we obtain:

B̃ = 1 + βBl → Bl

(
B̃
)

= max
{

0, β−1
(
B̃ − 1

)}
= B?

(
B̃
)
.

Obviously, B?
(
B̃
)
< Bo since we are in the constrained region.

Consider now the planner problem that restricts choices to at least some of both goods

are consumed by the worker:

Problem 13. The Primal Planner’s problem restricted to both types of consumption is:

P̃
(
B̃
)

= max
B∈[Bl(B̃),Bh(B̃)]

{
(1− θ) log ((1− β)B) + θ log

(
A
(
µ
(
B, B̃

))
· µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
subject to:

µ
(
B, B̃

)
≡ 1 + βB − B̃

and

Sw
(
B, B̃

)
= B̃ −B.

We have the following Lemma.
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Lemma 14. For any B̃ < 1−θβ
1−β , the original planner problem satisfies:

Pθ
(
B̃
)

= max
{
P̃
(
B̃
)
,Pθ

}
.

Proof. Indeed, in the region Bp ∈
[
0, Bl

(
B̃
)]

the objective of the planner is equivalent

to the objective when the SBL is most relaxed, P
(
B, B̄

)
. Thus, since B̃ < 1+θβ

1−β , the

planner’s objective is increasing in the region
[
0, Bl

(
B̃
)]

. Thus, the planner’s solution

must fall in between Bp ∈
[
Bl

(
B̃
)
, B̄
]

. For any Bp ≥ Bh

(
B̃
)

= B̃, the objective

function in P
(
B, B̃

)
is independent of B̃ and hence, must coincide with the value of

Pθ. Hence, we can partition Pθ
(
B̃
)

according to the Lemma.

To prove the main result, I solve the problems Pθ and P̃
(
B̃
)

Auxiliary Problem Pθ: no spot consumption. The planner’s problem with the tight-

est SBL Pθ = Pθ (0) is given by:

Pθ = max
B∈[0,B̄]

P (B, 0)

where

Pθ = max
B∈[0,B̄]

{(1− θ) log ((1− β)B) + θ log (A (µ (B, 0))µ (B, 0))}

subject to:

µ (B, 0) ≡ 1− (1− β)B.

To solve this problem, I perform some calculations. First, note that:

∂ [A (µ)µ]

∂µ
= A (µ)

(
1 + εA

)
where,

εAµ ≡
∂A (µ)

∂µ

µ

A (µ)
.
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The derivative PB is therefore given by:

PB = (1− θ) (1− β)

(1− β)B
+ θ
A (µ)

(
1 + εAµ

)
µB (B, 0)

A (µ)µ
=

(1− θ)
B

− θ
(
1 + εAµ

)
(1− β)

1− (1− β)B
.

The second equation uses that µB (B, 0) ≡ − (1− β) .

The first term in PB, (1− θ) /B, is decreasing in B. The second term,

θ

(
1 + εAµ

)
(1− β)

1− (1− β)B
, (46)

is increasing. We know this because denominator is decreasing in B ∈
[
0, B̄

]
and the

elasticity of TFP is itself decreasing in µ,

εAµµ =
∂

∂µ

[
A′ (µ)µ

A (µ)

]
=
A′′ (µ)µ

A (µ)
+
A′ (µ)

A (µ)
− [A′ (µ)]2

[A (µ)]2
µ < 0.

Hence, εAµµµB (B, 0) > 0, since the product of two numbers thus, the numerator of the

second term (46). Thus, P is concave and therefore Pθ has a unique solution:

1− (1− β)B

(1− β)B
=

θ

1− θ
(
1 + εAµ (µ (B, 0))

)
and recall that µ (B, 0) = 1 − (1− β)B. I call this solution Bp: the planner debt level

under the most tight SBL. We have the following Lemma:

Lemma 15. The solution Bp > Bo.

Proof. The proof is immediate from 1 + εAµ < 1 and the fact that

1− (1− β)Bo

(1− β)Bo
=

θ

(1− θ)
.

Next, I solve P̃
(
B̃
)

.
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Auxiliary Problem P̃
(
B̃
)

: spot and chained consumption. Consider now the plan-

ner problem where at least some of both goods are consumed by the worker:

P̃
(
B̃
)

= max
B∈[B?(B̃),B̃]

P̃
(
B, B̃

)

P̃
(
B̃
)
≡
{

(1− θ) log ((1− β)B) + θ log
(
A
(
µ
(
B, B̃

))
· µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
subject to:

µ
(
B, B̃

)
≡ 1 + βB − B̃

and

Sw
(
B, B̃

)
= B̃ −B.

The derivative of the objective in P̃
(
B̃
)

is:

P̃B
(
B, B̃

)
= (1− θ) 1

B
+ θ
A
(
µ
(
B, B̃

))(
1 + εAµ

(
µ
(
B, B̃

)))
β − 1

A
(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ B̃ −B

.

Recall that,

Cw
(
B, B̃

)
= A

(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ B̃ −B.

and

Q · Cw
(
B, B̃

)
= Ew

(
B, B̃

)
= 1− (1− β)B

Hence, using the definition of Q and q we rewrite:

P̃B
(
B, B̃

)
= (1− θ) 1

B
− θQ

1− β
(

1 + εAµ

(
µ
(
B, B̃

)))
A
(
µ
(
B, B̃

))
1− (1− β)B

We can multiply both sides by the ratio of 1− (1− β)B and divide by (1− β) (1− θ) and

obtain:

P̃B
(
B, B̃

) 1− (1− β)B

(1− θ) (1− β)B
=

1− (1− β)B

(1− β)B
− θ

1− θ
Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
.
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This function must have the same sign as P̃B
(
B, B̃

)
, since at was obtained by mul-

tiplication of positive numbers. The first term is decreasing in B. In turn, QµµB is

increasing in B. Hence, as long as

A (µ)
(
1 + εAµ

)
= A (µ) +A′ (µ)µ

is decreasing inB, the second term is increasing. The second term is indeed decreasing

in µ since its derivative is:

2A′ (µ) +A′′ (µ)µ < 0,

where the sign follows immediately from the concavity and monotone decreasing prop-

erties ofA. Hence, the objective function P̃
(
B, B̃

)
is concave inB. Furthermore, since

Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
> 1,

and we have an interior maximum in the region B ∈
[
B?
(
B̃
)
, B̃
]

, B must solve:

1− (1− β)B

(1− β)B
=

θ

1− θ
Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
,

and must be such that B < Bo.

Next, we establish properties regarding the limits of this function at B?
(
B̃
)

and B̃.

I start with B?
(
B̃
)

:

lim
B↓B?(B̃)

1− (1− β)B

(1− β)B
− θ

1− θ
Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
= ...

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) − θ

1− θ

(
1

1− β
−
β
(
1 + limµ↓0 ε

A
µ

)
limµ↓0A (µ)

1− β

)
,

where I used limµ↓0Q = 1. Appendix A, shows that limµ↓0 1+εAµ = 0 and that limµ↓0A (µ) =
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δ. Thus, the limit of the objective function at the left boundary has the sign of:

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) − θ

1− θ
1− βδ
1− β

=
1− (1− β)B?

(
B̃
)

(1− β)B?
(
B̃
) − 1− (1− β)Bo

(1− β)Bo

1− βδ
1− β

.

The function B?
(
B̃
)
< Bo but 1−βδ

1−β > 1, hence the sign is ambiguous. The solution is

at this corner if the function is negative.

Next, we consider the limit of the derivative of the objective at B̃. Evaluating the

limits is immediate. Hence, if

1− (1− β) B̃

(1− β) B̃
≥ θ

1− θ

(
1− β

(
1 + εAµ (µ)

)
A (µ)

1− β

)∣∣∣∣∣
µ=(1−(1−β)B̃)

the solution is B = B̃. Moreover, we know that since(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
> 1,

the corner solution B̃ is chosen only if

1− (1− β) B̃

(1− β) B̃
>

1− (1− β)Bo

(1− β)Bo
.

Collecting the results up to this point, we have the following Lemma.

Lemma 16. The solution Bp
` to P̃

(
B̃
)

is as follows.

I. Bp
` = B̃ if

1− (1− β) B̃

(1− β) B̃
≥ θ

1− θ

(
1− β

(
1 + εAµ (µ)

)
A (µ)

1− β

)∣∣∣∣∣
µ=(1−(1−β)B̃)

,

II. Bp
` = B?

(
B̃
)

if

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) ≤ θ

1− θ
1− βδ
1− β

.
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III. Otherwise, Bp
` solves:

1− (1− β)Bp
`

(1− β)Bp
`

= ...

θ

1− θ
Q
(
Bp
` , B̃

) 1− β
(

1 + εAµ

(
µ
(
Bp
` , B̃

)))
A
(
µ
(
Bp
` , B̃

))
1− β

∣∣∣∣∣∣
µ=(1−(1−β)Bp` )

.

The following Lemma characterizes threshold values for B̃ corresponding to the

Lemma above:

Lemma 17. The condition

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) ≤ θ

1− θ
1− βδ
1− β

holds for all B̃ ≥ B̃i such that:

1− (1− β)B?
(
B̃i
)

(1− β)B?
(
B̃i
) =

θ

1− θ
1− βδ
1− β

.

The reverse inequality holds for B̃ ≤ B̃a such that:

1− (1− β)B?
(
B̃a
)

(1− β)B?
(
B̃a
) =

θ

1− θ

(
1− β

(
1 + εAµ (µ)

)
A (µ)

1− β

)∣∣∣∣∣
µ=(1−(1−β)B̃a)

.

Proof. The proof follows immediately from the fact that:

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) ,

is decreasing in B̃ and the function:

θ

1− θ
Q
(
B, B̃

) 1− β
(

1 + εAµ

(
µ
(
B, B̃

)))
A
(
µ
(
B, B̃

))
1− β

∣∣∣∣∣∣
µ=(1−(1−β)B)
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increasing in B.

Overall Solution. I showed above that:

Pθ
(
B̃
)

= max
{
P̃
(
B̃
)
,Pθ

}
.

The following Lemma shows that the solution Bp to the Planner’s problem is never at

Bp = B̃.

Lemma 18. The planner never chooses Bp = B̃.

Proof. To proof this Lemma observe that the left limit as B ↑ B̃ satisfies

q − 1− εA

1− β
+ 1 + εA > 1 + εA,

where the inequality follows from q > 1 and εA < 0. As a consequence,

1− (1− β) B̃

(1− β) B̃
≥ θ

1− θ
lim
B↑B̃

Λ
(
B, B̃

)
implies

1− (1− β) B̃t

(1− β) B̃t

>
θ

1− θ
lim
B↓B̃t

Λ
(
B, B̃

)
.

Hence, although the derivative of the objective is discontinuous at B̃, we know that

if the derivative is weakly increasing from the left and increasing from the right. This

implies that B = B̃ is never an optimal choice.

Next, observe P̃
(
B̃
)

has a compact-valued and continuous constraint correspon-

dence with a continuous objective. Hence, it satisfies the conditions for the Theorem

of the Maximum. In addition it is immediate to verify that:

lim
B̃↑ 1−θβ

1−β

P̃
(
B̃
)

= P̄θ and lim
B̃↑ 1−θβ

1−β

Bp(B̃) = Bo.



71

I employ the Envelope Theorem on P̃
(
B̃
)

. In the region where the solution to P̃
(
B̃
)

is not at a corner solution, the Envelope Theorem yields:

P̃B̃ =
θ

1− (1− β)Bp(B̃)
Q
(
Bp(B̃), B̃

)(
1−

(
1 + εAµ

(
µ
(
Bp(B̃), B̃

)))
A
(
µ
(
Bp(B̃), B̃

)))
> 0,

since B̃ appears directly through µ and S in the objective.

The function is strictly increasing in B̃ since εAµ < 0 and A < 1. In the region where

the function is at the lower corner of the constraint:

B = B?
(
B̃
)
,

the value of this term is:

P̃B̃ =
θ

1− (1− β)B?
(
B̃
) (1− δ) > 0

and

P̃B|B=B?(B̃) =
1− θ

(1− β)B?
(
B̃
) − θ (1− βδ)

1− (1− β)B?
(
B̃
) .

Thus, we have that the marginal objective value is:

P̃B̃ + P̃B
(
Bp(B̃)

)
=

1− θ

(1− β)B?
(
B̃
) +

βδ

1− (1− β)B?
(
B̃
) > 0.

Hence, the envelope condition guarantees that P̃ is decreasing in B̃. We have that:

There exists a threshold B̃s such that:

P̃
(
B̃s
)

= Pθ.

In particular, it solves:

P̄θ = Pθ +

∫ 1−θβ
1−β

B̃s

(
P̃B̃ + P̃B

(
Bp(B̃)

)
B?
B̃

(
B̃
))

dB̃.

Notice that Pθ is finite and lower than the value of the problem without constraints,
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P̃ (0) tends to −∞ and P̃
(
B
)

tends to the value of problem without constraints. This

implies that P̃ (0) < Pθ < P̃
(
B
)

and from continuity of the value function (Theorem of

the Maximum) and the Intermediate Value Theorem, the existence of B̃e is guaranteed.

The solution to B̃e follows from the fundamental theorem of calculus.

Recall, that in the previous Lemma we had showed that B̃ is never a solution to P̃
and the monotonicity the existence of the thresholdBi. These thresholds segments the

intervals as given by the proposition. This concludes the proof of the general version

of Proposition 8.
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C.3 Proof of Proposition 9

Let’s define the indirect social utility function of the Planner Problem with expenditures

Pg:

Pg
(
B, B̃,Gs, Gx

)
= (1− θ) log (Cs (B)) + θ log

(
Sw
(
B, B̃,Gs, Gx

)
+Xw

(
B, B̃,Gs, Gx

))
.

The following functions determine the allocation:

Cs (B) ≡ (1− β)B

Ew (B,Gs, Gx) ≡ 1− Es (B)−Gx −Gs

Sw
(
B, B̃,Gs, Gx

)
≡ min

{
max

{
B̃ −B, 0

}
, Ew

}
Xw

(
B, B̃,Gs, Gx

)
≡
Ew −min

{
max

{
B̃ −B, 0

}
, Ew

}
q

q
(
B, B̃,Gs, Gx

)
≡A−1 (µ)

µ
(
B, B̃,Gs, Gx

)
≡Gx +Xwq.

The worker’s total consumption is:

Cw = Sw
(
B, B̃,Gs, Gx

)
+Xw

(
B, B̃,Gs, Gx

)
.

Because

Y = Cw + CS +Gs +
Gx

q (µ)
,

but Cs (B) is independent of the government’s expenditure, we obtain: dY = dCw +

dGs + d (Gx/q (µ)).

Thus, we have that the government’s expenditure multiplier for expenditure of type

i = x, s relates to the worker’s consumption as follow:

Ms
(
B, B̃

)
≡ dY
dGs

=
dCw

dGs
+ 1
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and

Mx
(
B, B̃

)
≡ dY

dGx
=
dCw

dGx
+

1

q
− Gx

q2

dq

dµ

dµ

dGx

=
dCw

dGx
+A (µ) .

where the last equation is because we are interested in obtaining the government’s in-

finitesimal multiplier, evaluated at Gx = Gs = 0. We have defined these multipliers

as:

Mi
(
B, B̃

)
≡ dY

dGi

∣∣∣∣
Gx=Gs=0

,

and relating to the indirect social utility function, the change in the objective is:

θ

Cw

dCw

dGi
,

for expenditure i.

Case 1. All spot consumptionB < B?. If there is only spot consumption:

Cs (B) ≡ (1− β)B

Cw
(
B, B̃,Gs, Gx

)
≡ 1− (1− β)B −Gx −Gs

Xw
(
B, B̃,Gs, Gx

)
≡ 0

q
(
B, B̃,Gs, Gx

)
≡A−1 (µ)

µ
(
B, B̃,Gs, Gx

)
≡Gx.

Since worker consumption is independent of q, we have that:

dCw

dGi
= −1
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for both i ∈ {x, s}. In turn, we have that

Ms
(
B, B̃

)
=
dCw

dGs
+ 1 = 0.

Likewise, for chained expenditures we have:

Mx
(
B, B̃

)
=

dCw

dGx
+A (µ)

(
1 + εAµ

)
= − (1−A (µ)) + εAµ < 0.

Case 2. Some chained consumption. If there are some chained expenditures:

Cs (B) ≡ (1− β)B

Ew (B,Gs, Gx) ≡ 1− (1− β)B −Gx −Gs

Cw
(
B, B̃,Gs, Gx

)
≡ Sw +Xw

Sw
(
B, B̃,Gs, Gx

)
≡ max

{
B̃ −B, 0

}
Xw

(
B, B̃,Gs, Gx

)
≡
Ew −max

{
B̃ −B, 0

}
q

q
(
B, B̃,Gs, Gx

)
≡A−1 (µ)

µ
(
B, B̃,Gs, Gx

)
≡Gx +Xwq.

Rewriting the last three identities usingA (µ) instead of q we have

Xw ≡A (µ)
(
Ew −max

{
B̃ −B, 0

})
µ ≡Gx + Ew −max

{
B̃ −B, 0

}
.

Substituting Ew we have, naturally,

µ = 1−
(

(1− β)B +Gs + max
{
B̃ −B, 0

})
︸ ︷︷ ︸

spot exp.

. (47)



76

From here we obtain that:

dXw

dGx
= −A (µ) +A′ (µ)

dµ

dGx

(
Ew −max

{
B̃ −B, 0

})
.

Since dµ
dGx

= dSw

dGx
= 0, we have that:

dCw

dGx
= −A (µ) .

Hence, the government multiplier for chained expenditures is:

Mx
(
B, B̃

)
= εAµ < 1.

Next, observe that:

Xw ≡ A (µ)
(

1− (1− β)B −Gx −Gs −max
{
B̃ −B, 0

})
.

Hence,

dXw = −A (µ) dGs +A′ (µ)

(
Xw

A (µ)

)
dµ

= −A (µ) dGs +A (µ) εAµ

(
Xw

A (µ)
/µ

)
dµ.

The second line follows from:

A (µ)µ ≡ Gx +Xw.

Also following this condition, we have that:

A (µ)
(
1 + εAµ

)
dµ ≡ dXw.

Combining the differentials evaluated at Gx = 0, we obtain:

dµ = −dGs.
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Hence,
dCw

dGs
=
dXw

dGs
= −A (µ)

(
1 + εAµ

)
.

Following the relationship with the fiscal multiplier, we obtain:

Ms
(
B, B̃

)
=1−A (µ)−A (µ) εAµ .

Summary. We summarize the results:

dCw

dGx
=


−1 B < B?

(
B̃
)

−A (µ) B > B?
(
B̃
)

and

dCw

dGs
=


−1 B < B?

(
B̃
)

−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.

Finally, recall that the government multipliers relate to the change in consumption

as follows:

Ms
(
B, B̃

)
≡ dY
dGs

=
dCw

dGs
+ 1

and

Ms
(
B, B̃

)
≡ dCw

dGx
+A (µ)

with:

dµ

dGx
=


1 B < B?

(
B̃
)

0 B > B?
(
B̃
)
.
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Therefore, adding terms:

Mx
(
B, B̃

)
=


−
(
1−A (µ)

(
1 + εAµ

))
B < B?

(
B̃
)

0 B > B?
(
B̃
)
.

Hence,

Ms
(
B, B̃

)
=


0 B < B?

(
B̃
)

1−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.


