1 CES Operators

1.1 The Aggregator
e The CES operator, otherwise called Armington aggregator is defined:
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0 is the inverse elasticity of substitution.

Furthermore, > o; = 1, without loss of generality.

We now find the solution and back out the wealth and substitution effects.

First observation.

Any solution to V (W) is linear in W. The reason is that:
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for some weight. By change of variables:
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e We have the following FOC:
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Let’s multiply by z; to obtain:

Summing up on all ¢, we obtain:
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Thus, we have that:
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Back in objective:
160 _ 10 W = 1-1717¢
z; " =a; () [V(W) _9}
Di
Multiplying by: «; we obtain:
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The term
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is called the ideal price index.

Also, call
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What is then z;? From FOC:
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Thus we obtain the following relationship:
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Let ¢; = z; to obtain:
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Elasticitities

Since there are N commodities. We are interested in the direct elasticities

and the cross-elasticities across goods:
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Also, there are the Hicksian elasticities obtained when the agent is com-
pensated with more wealth:
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where the formula for ¢ changes to account for for the change in p.



e Note that neither concept is write nor wrong, they are just useful ways to
view the world.

e The Hicksian compensated demand is given by:
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while holding C* fixed. The idea is to keep "utility" constant. That is:
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In other words, wealth goes up in the same proportion as prices.

e Thus, the Hicksian elasticity is obtained via:
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e In the case of the the cross-Hicksian demand:
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e The inverse-demand (Marshallian demand) for good i take into account
the effect on C*. Thus, it’s more convenient to work with the formula that
uses wealth:
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Hence, we obtain:
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For the cross-elasticities we obtain:

Jdc; 1-6 1 0p*p;
= 70147 —_
Op; ¢ p* Opip;
1 1 * *
€ = ] € - €
—~— —~—
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Excercis: Show that e;f > 0.

Question: what happens when 1/6 < 1. Wealth effect dominates and

6;' < 0.
In turn, if 1/6 > 1, we have that ez- > 0.

In turn, if 1/6 = 1, we have that 6; =0.

What if 1/6 < 0?7 We run into problems since operator is convex. Still, we
can use the to show which (unique) good would be bought and determine

Utility as function of the change in p;.
Deriving Limits

In mathematics,
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is called the generalized mean.

When 6 = —1, we have the Euclidean Norm.

Note that when 6 = 0, we have a weigthed average.

6 = 1/2 we have:
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When 6 = 2, we obtain a geometrice mean:
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We now derive some special limits:



1.4 Log-Utility Case
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We can pass limits since exp is a continuous function (See Rudin).
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The term inside the exp is of the form 0/0. We can apply L’'Hospital. Thus:
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I used the chain rule, and the fact that the derivative of ¥ w.r.t. o is 2*logz.
Since the limit was inside and exponential:
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The function becomes Cobb-Douglass with a scalar adjustment:
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1.5 Leontieff-Knightian Limit
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This function is again of the form 0/0 (why?).
Then, applying L’Hospital:
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First case: one a; = 1. Then, clearly, U (z) = z;. So in the interesting case:
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Note that when we take the limit each side each summation, at least one term
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disappears when (3— /

) > 1. So whenever, ¢ is bigger than at least one

element, the entire term disappars. The only survivor term is: log (z;/a;) for
x;/a; the min. Now if two terms are equal, of more than two (n) are equal. We
end up with summations of the form:
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for ;/c; the min {z;/«a;} .

1.6 Questions

e Derive the case where § — —c.

1.7 Infinite Countable Case

1.8 Integrable Case

1.9 Recursive Properties of the Aggregator
1.10 Aggregation Properties

e Statement of Gorman Aggregation.

e Corollary. Any CES operator satisfies the conditions for Gorman Aggre-
gation and thus has a representative agent.

1.11 Connection to Standard Utility
1.12 Two Period Model

1.13 Infinite Horizon

1.14 Connection to E-Z Utility



