
Scrambling for Dollars: International
Liquidity, Banks and Exchange Rates∗

Javier Bianchi†, Saki Bigio‡, and Charles Engel§

December 2022

Abstract

We develop a theory of exchange rate fluctuations arising from financial institutions’
demand for dollar liquid assets. Financial flows are unpredictable and may leave
banks “scrambling for dollars.” Because of settlement frictions in interbank markets, a
precautionary demand for dollar reserves emerges and gives rise to an endogenous
convenience yield on the dollar. We show that an increase in the dollar funding risk
leads to a rise in the convenience yield and an appreciation of the dollar, as banks
scramble for dollars. We present empirical evidence on the relationship between
exchange rate fluctuations for the G10 currencies and the quantity of dollar liquidity,
which is consistent with the theory.

Keywords: Exchange rates, liquidity premia, monetary policy
JEL Classification: E44, F31, F41, G20

∗We would like to thank the discussants Benjamin Hebert, Oleg Itskhoki, Rohan Kekre, Ernest Liu, Dmitry
Mukhin, Jesse Schreger, Jenny Tang, and Motohiro Yogo, as well as Andy Atkeson, Roberto Chang, Pierre-
Olivier Gourinchas, Arvind Krishnamurthy, Martin Eichenbaum, Sebnem Kalemli-Ozcan, Matteo Maggiori,
Ken Miyahara, Sergio Rebelo, and Hélène Rey for excellent comments. We also thank participants at various
conferences and seminars.

†Federal Reserve Bank of Minneapolis, email javier.i.bianchi@gmail.com
‡Department of Economics, University of California, Los Angeles and NBER, email

sbigio@econ.ucla.edu
§Department of Economics, University of Wisconsin, Madison, NBER and CEPR, email

cengel@ssc.wisc.edu



1 Introduction

The well-known “disconnect” in international finance holds that foreign exchange rates
show little empirical relationship to the macro variables, such as interest rates and output
(Obstfeld and Rogoff, 2000). More recent work contends that the source of the disconnect is
in financial markets (Itskhoki and Mukhin, 2021a). Moreover, there has long been evidence
of time-varying expected excess returns in foreign exchange markets, and furthermore, it
appears that the US dollar is particularly special, as dollar assets offer lower average returns
relative to the rest of the major currencies when measured on historical data (Gourinchas
and Rey, 2007a). To account for the exchange rate disconnect and associated puzzles, the
literature has turned to models with currency excess returns as the potential “missing link.”
The source or sources of these excess returns, however, remains an unsolved mystery.

In this paper, we develop a theory of exchange rate fluctuations arising from the liquidity
demand by financial institutions within an imperfect interbank market. We build on two
observations of the international financial system. First, US dollars are the dominant
source of foreign-currency funding. According to the BIS locational banking statistics, in
March 2021, the global banking and non-bank financial sector had cross-border dollar
liabilities of over $11 trillion. Second, dollar funding may turn unstable. As documented,
for example, in Acharya, Afonso and Kovner (2017), banks are occasionally subject to
large funding uncertainty or interbank market freezing that can leave them “scrambling
for dollars.” Narrative discussions attribute fluctuations in the US dollar exchange rate to
such vicissitudes in the short-term international money markets. A contribution of our
paper is to develop a framework to formally articulate this channel and provide empirical
evidence consistent with it.

We construct a model in which financial institutions, which we refer to simply as “banks,”
hold assets and liabilities in two currencies. Banks face the risk of sudden outflows of
liabilities. If a bank ends up short of liquid assets to settle those flows, it needs to find a
counterparty, but there may be times when banks may lose confidence in one another and
create frictions in the interbank market. As insurance against these outflows, banks maintain
a buffer of liquid assets—especially dollar liquid assets, in line with the aforementioned
observations on the international financial system. To the extent that funding risk and
the frictions in the interbank markets vary over time, this changes the relative demand for
currencies, resulting in movements in the exchange rate.

The theory uncovers how frictions in the settlement of international deposit flows
emerge as a dollar liquidity premium. This dollar liquidity premium generates a time-
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varying wedge in the interest parity condition, or “convenience yield,” which plays a
pivotal role in the determination of the exchange rate. Critically, the convenience yield
is endogenous and depends on the quantity of outside money (liquid assets) and policy
rates, as well as the matching frictions in the interbank market and the volatility of deposit
flows in different currencies. Through this endogenous convenience yield, we link the
nominal exchange rates and the dollar liquidity premium to the reserve position of banks
in different currencies, funding risk, and confidence in the interbank market.

On the surface, the model resembles the seminal monetary exchange rate model of
Lucas (1982). In that model, two currencies earn a liquidity premium over bonds because
certain goods must be bought with corresponding currencies. A money demand equation
determines prices in both currencies, and relative prices determine the exchange rate. Our
model shares Lucas’s segmentation of transactions and exchange rate determination. How-
ever, in our model, the demand for reserves in either currency stems from the settlement
demand by banks, giving rise to different predictions of how the exchange rate reacts to
shocks and to policy. In particular, our model rationalizes why the dollar tends to appre-
ciate in times of high volatility, therefore acting as a “safe haven”. This is a phenomenon
that has been challenging to reconcile with existing models of financial intermediaries (see,
Maggiori, 2017).1

Many recent theories have focused primarily on risk premia or external financing premia
to explain excess currency returns and exchange rate movements. Risk premium models
explain excess dollar returns as stemming from how currencies other than the dollar have
greater exposure to global pricing factors. External financing premium models account
for excess dollar returns as emerging from banks’ balance sheet constraints and limits to
international arbitrage.2 We provide an alternative theory based on a liquidity premium.
Our baseline model abstracts from risk premia and limits to international arbitrage to focus
squarely on liquidity. At the center of the model is the idea that funding risk may leave
banks scrambling for dollars.

We provide empirical evidence consistent with the theory by relating the banking
sector’s balance sheet data to the foreign currency price of US dollars. According to
the theory, the financial sector increases its demand for liquid dollar assets relative to
dollar funding—US government obligations, including Treasuries and reserves held at
the Federal Reserve—when funding becomes more uncertain, and this in turn translates

1Maggiori (2017) shows that in a global downturn, US households bear a larger share of the losses relative
to the rest of the world. With home bias, this means that the dollar must experience a real depreciation in a
global downturn.

2See Lustig, Roussanov and Verdelhan (2011, 2014) and Gabaix and Maggiori (2015) for important
examples in these two strands of the literature.
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into an appreciation of the dollar. Our analysis shows that the dollar liquidity ratio, the
ratio of dollar liquid assets relative to dollar funding, does indeed positively correlate with
the relative value of the dollar. Notably, this relationship is robust to controlling for the
VIX index, a variable that captures a broad measure of uncertainty and has been shown to
have significant explanatory power for exchange rates (Brunnermeier, Nagel and Pedersen,
2008; Lilley, Maggiori, Neiman and Schreger, 2019). The liquidity ratio is, of course, not an
exogenous driver of exchange rates—neither in our model nor in the data. Empirically, our
results remain when we instrument the liquidity ratio by shocks that capture the demand
for dollar reserves. We also demonstrate theoretically that funding risk drives this empirical
correlation.

A calibrated version of our model is able to reproduce the empirical regressions. More-
over, a variance decomposition exercise reveals that liquidity factors accounted for about
1/3rd of the variations in the euro dollar exchange rate over the last 20 years, a similar
contribution as the contribution of risk premium factors. Furthermore, liquidity factors
accounted for more than 90% of the deviations from covered interest parity and the conve-
nience yield.
Literature Review. A large strand of the literature has developed models of the risk pre-
mium to address the forward premium puzzle and the large excess returns of the carry
trade.3 On the empirical side, Lustig et al. (2014) identify a dollar risk factor that makes
the dollar carry-trade profitable, while Hassan and Mano (2019) provide a decomposition
of the factors that drive the dollar carry-trade and the cross-sectional deviations from
uncovered interest parity. Kalemli-Özcan (2019) and Kalemli-Özcan and Varela (2021)
document that the factors driving risk premia among advanced economies and emerging
markets are different.

An important development in the literature has been the modeling of the “safe haven”
status of the US dollar and its association with the “exorbitant privilege” that the US enjoys
from the returns on its net foreign asset position (Gourinchas and Rey, 2007a,b). Caballero,
Farhi and Gourinchas (2008) provide a model that links the special ability of the US to
produce financial assets to the evolution of capital flows and excess returns. Other papers
have modeled the US as a country that is willing to assume more risk, perhaps because its
internal financial markets are more developed and therefore willing to hold riskier assets
that yield a higher expected return (see, for example, Mendoza, Quadrini and Rios-Rull,

3See Bansal and Shaliastovich (2013); Colacito (2009); Colacito and Croce (2011, 2013); Colacito, Croce,
Gavazzoni and Ready (2018a); Colacito, Croce, Ho and Howard (2018b); Lustig and Verdelhan (2007);
Verdelhan (2010), Burnside, Eichenbaum, Kleshchelski and Rebelo (2011), Farhi and Gabaix (2016), and Farhi,
Fraiberger, Gabaix, Ranciere and Verdelhan (2015). Engel (1996, 2014) surveys empirical and theoretical
models.
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2009; Gourinchas, Rey and Govillot, 2010; Gourinchas, Rey and Govillot, 2010; Maggiori,
2017; Farhi and Maggiori, 2018). Gourinchas, Rey and Sauzet (2019) provide an overview
of this literature.

Another strand of the literature has focused on the interaction between risk-averse
investors and preferred habitat investors or noise traders, who may not be motivated by
risk/return considerations in their portfolio choice. These studies include Koijen and Yogo
(2020)’ general model of portfolio choice, the preferred habitat models of Gourinchas, Ray
and Vayanos (2021), and Greenwood, Hanson, Stein and Sunderam (2020).

Our paper is also related to a recent literature that places special emphasis on interna-
tional financial intermediaries—see Gabaix and Maggiori 2015; Amador, Bianchi, Bocola
and Perri 2020; Fanelli and Straub 2020; Itskhoki and Mukhin, 2021a and the review by
Maggiori (2021).4 Different from these papers, we do not introduce borrowing limits on
financial intermediaries; our work is unique in that we consider liquidity risk as a source
of exchange rate fluctuations Moreover, we link liquidity risk in the model to observables
in the data and show it has markedly different policy implications. The failure of covered
interest parity since the global financial crisis is often interpreted as evidence of limits to
arbitrage (see e.g., Baba and Packer (2009); Du, Tepper and Verdelhan (2018), Avdjiev, Du,
Koch and Shin (2019); Liao (2020); and the survey of Du and Schreger (2021)). Our study
offers an alternative channel by which deviations from covered interest parity might arise.

Our model is closely connected to the recent literature on convenience yields in foreign
exchange markets. Engel (2016), Valchev (2020), Jiang, Krishnamurthy and Lustig (2020,
2021), Engel and Wu (2018), and Kekre and Lenel (2021) provide simple, descriptive
models of the convenience yield using bonds in the utility function and show how this
affect exchange rates. In particular, Jiang et al. (2021) and Kekre and Lenel (2021) provide
equilibrium models in which the appreciation of the dollar is driven by an increase in
its convenience yield and show how this can potentially account for the resolution of
reserve currency paradox documented in Maggiori (2017). Our study might be described
as providing “microfoundations” for the convenience yield, which is essential for a deeper
understanding of the factors that drive changes in the demand for US dollar assets and
exchange rates. In particular, our model can account for why times of elevated funding
risk translate into appreciations of the dollar and thus make the dollar a “safe haven”.

Our paper also relates to an emerging literature on interbank market frictions and
monetary policy (see e.g. Bianchi and Bigio (2021); Piazzesi and Schneider (2021); and
Weill (2020) for a review) To the best of our knowledge, our paper provides the first attempt

4A related literature also emphasizes domestic asset market segmentation (Alvarez, Atkeson and Kehoe,
2009) and constraints on portfolio choices (Bacchetta and Van Wincoop, 2010).
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at incorporating these frictions in an open economy framework. Our model builds more
closely on Bianchi and Bigio (2021), which we extend in our open-economy framework
with multiple currencies and aggregate risk.

Finally, our paper is related to the literature on the preeminence of the dollar in interna-
tional financial markets. Rey (2013, 2016) and Miranda-Agrippino and Rey (2020) identify
US monetary policy as a key factor in the global financial cycle. Gopinath (2016) and
Gopinath, Boz, Casas, Dı́ez, Gourinchas and Plagborg-Møller (2020) stress the dominant
role of the dollar unit of account as one possible key channel. Gopinath and Stein (2021)
provide a link between trade invoicing and the role of the dollar as a safe store of value. We
propose a different channel based on dominant role of the dollar in the funding market.
Organization. The paper is organized as follows. Section 2 presents the empirical analysis.
Section 3 presents the model, and Section 4 characterizes properties of the model. Section
5 presents the calibration of the model and the quantitative results. Section 6 concludes.
All proofs are in the Appendix.

2 Empirical Analysis of Liquidity and Exchange Rates

We begin inspecting the data relating the banking sector’s balance sheet and the foreign
currency price of US dollars. Our thesis, is that the financial sector increases its demand for
liquid dollar assets, including US government obligations and reserves held at the Federal
Reserve, when funding becomes more uncertain, and this drives movements in exchange
rates. Before the analysis, it is useful to provide some of the institutional background.
Institutional background. The US dollar serves as the leading funding currency. Close to
half of all cross-border bank loans and international debt securities are denominated in
dollars. In addition to serving as the key international unit of account, the dollar serves as
a vehicle currency for foreign exchange transactions and an invoicing currency for global
trade. In fact, 85% of all foreign exchange transactions occur against the US dollar, and 40%
of international payments are made in US dollars.5,6

The central role of the US dollar in the international financial and monetary system
means that billions of US dollars circulate within and across countries every day. As the
2020 BIS working group report (Davies and Kent, 2020, p. 29) puts it,

US dollar funding is channeled through the global financial system, involving
5See Davies and Kent (2020) and the references therein.
6The global status of the US dollar dates to the Bretton Woods agreement, and this dominance has only

deepened since then (Ilzetzki, Reinhart and Rogoff, 2019).
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entities across multiple sectors and jurisdictions. Participants in these markets
face financial risks typically associated with liquidity, maturity, currency and
credit transformation. What makes global US dollar funding markets special
is the broad participation of non-US entities from all around the world. These
participants are often active in US dollar funding markets without access to a
stable US dollar funding base or to standing central bank facilities which can
supply US dollars during episodes of market stress.

At the same time Ivashina, Scharfstein and Stein (2015) note that “[European] banks rely
on wholesale dollar funding, while raising more of their euro funding through insured
retail deposits” (p. 1241), implying that dollar funding is more volatile and potentially
less certain during times of instability.

The other pillar of our thesis is that financial institutions are subject to liquidity mis-
match. To the extent that banks are not able to liquidate loans or other relatively illiquid
assets, financial institutions’ demand for dollars can fluctuate considerably, depending on
funding risk and the vicissitudes of foreign exchange transactions. We will next argue that
changes in these conditions translate in the data into movements in the dollar exchange
rates.
Data and empirical analysis. We examine the behavior of the US dollar against the other
nine G10 currencies, with special attention given to the euro. The euro area is especially
important in our analysis because it encompasses a large economy with a financial system
that relies heavily on short-term dollar funding. The other currencies are the Australian
dollar, the Canadian dollar, the Japanese yen, the New Zealand dollar, the Norwegian
krone, the Swedish krona, the Swiss franc, and the UK pound.

We look at two sources of data for the US banking system. Detailed data on short-term
dollar funding and on liquid dollar assets are not readily available for the global financial
system, so we use the US data as a proxy for the dollar-denominated elements of the global
banking balance sheets. That is, we assume that when faced with uncertainty about dollar
funding, foreign banks’ demand for liquid dollar assets responds in a similar way to that of
banks located in the US (including US-based subsidiaries of foreign banks). This approach
is also followed by Adrian, Etula and Shin (2010), a study that aims to show how the
price of risk is related to banks’ balance sheets and the expected change in the exchange
rate (rather than the current level of the exchange rate, which is our concern here). More
precisely, Adrian et al. focus on the state of the balance sheet at time t in forecasting et+1−et,
as they are concerned with understanding the expected excess return on foreign bonds
between t and t+ 1. Our interest is in how changes in the balance sheet between t− 1 and
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t contribute to changes in the exchange rate between t− 1 and t—that is, et − et−1.
We consider two measures of short-term funding to financial intermediaries. The first,

used by Adrian et al. (2010), is US dollar financial commercial paper, series DTBSPCKFM
from Federal Reserve Economic Data (FRED). Another major source of short-term funding
to U.S. banks is demand deposits, measured by DEMDEPSL from FRED (from the Fed’s
H.6 statistical release). We construct a variable that measures the level of funding and
the response of financial intermediaries to uncertainty about that funding. We look at
the ratio of the sum of reserves held at Federal Reserve banks and government securities
(Treasury and agency) held by commercial banks (the sum of TOTRESNS and USGSEC
from FRED, which are found in the Fed’s H.6 and H.8 releases, respectively) to short-term
funding (DTBSPCKFM + DEMDEPSL). This variable is endogenous in our model, but its
movements are a key indicator of how the demand for dollars is affected by the financial
sector’s demand for liquid assets when funding risk increases. As dollar funding becomes
more volatile for banks, they will increase their ratio of safe dollar assets to liabilities. That
in turn will lead to a global increase in dollar demand, leading to a dollar appreciation.

The model describes financial intermediaries and their demand for liquid dollar assets.
We see the intermediaries as representing a global collection of financial institutions from
the U.S. and the rest of the world, including money market funds, insurance firms, mutual
funds, etc. However, we use proxies based on the U.S. banking system for two reasons.
First, while certain measures of short-term assets and liquid liabilities for the U.S. banking
system are available, this is not the case for other financial intermediaries, including foreign
banks. Second, different intermediaries have different institutional and legal constraints,
and so even if all the data were available, there is no clear way to aggregate the short-term
funding and liquid assets of all intermediaries. Thus, it is preferable to use data from the
U.S. banking system as a basis for the liquidity measures. Note the U.S. system includes
subsidiaries of foreign banks, which we will isolate and examine separately below.

Figure 1 plots this ratio of liquid government asset holdings to short-term funding of
the financial sector together with alternative measures described below. During this period,
bank liquid government-asset holdings balances rose from around 10 billion dollars in
August 2008 to nearly 800 billion dollars one year later, then reached a peak of around 2.3
trillion dollars by late 2017. They gradually declined to 1.4 trillion dollars by the end of
2019. The liquidity ratio does not show movement anywhere near that magnitude. It is
true that it rose during the onset of the global financial crisis, but for the most part, this
movement was not driven by the increase in reserves, because demand deposits rose almost
proportionately. Instead, a large part of the rise in the overall liquidity ratio was driven
by a fall in financial commercial paper funding, which worked to lower the denominator
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of the ratio. Subsequently, even as reserves continued to increase, the liquidity ratio fell.
The liquidity ratio is not mechanically determined by central bank open-market operations.
The policies of the central bank do affect the liquidity ratio, as our model explains, but from
a mechanical standpoint, the immediate effect of, for example, an open market purchase of
bonds by the Federal Reserve to increase reserves held by banks is an equal increase in their
liquid assets. However, as individual banks choose their optimal liquidity ratio, interest
rates for various forms of funding adjust, and the liquidity ratio for the banking system
as a whole rebalances. As Acharya and Rajan (2021) put it: “central banks effectively
issue these reserves to commercial banks, which have to finance them. For a variety of
reasons, the best way for a bank to finance short-term assets is with short-term liabilities
such as deposits. In times of liquidity stress, this offsetting liability could claim some of
the liquidity created by the central bank.”
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Figure 1: The Ratio of Liquid Assets to Short-Term Liabilities

OLS Regression Results. In Table 1, we present the estimates of the regression:

∆et = α + β1∆(LiqRatt) + β2(πt − π∗t ) + β3LiqDepRatt−1 + εt. (1)
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In this regression, ∆(xt) means “the change from t−1 to t” in the variable xt; et is the log of
the exchange rate expressed as the G10 currency price of a US dollar; LiqRatt is the log of the
liquidity ratio described above; πt−π∗t is the difference between year-on-year inflation rates
in each of the nine countries against the US inflation. All data are monthly.7 The inflation
difference variable is meant to capture the effects of monetary policy on exchange rates.
As much of the empirical literature has found, there is a negative relationship between
the change in a country’s inflation rate and its exchange rate. When inflation is rising in a
country, under inflation-targeting regimes, markets anticipate future monetary tightening,
and that leads to a currency appreciation.

If dollar funding risk is driving the LiqRatt, then we also expect a positive relationship
between this variable and et; that is, β1 should be positive. During times of high uncertainty,
banks hold greater amounts of liquid dollar assets (reserves and Treasury securities)
relative to demand deposits, hence LiqRatt is higher. That increased demand for safe dollar
assets leads to a stronger dollar (an increase in et.)

We also include the lagged level of LiqRatt. We do so because the depreciation of the
dollar might depend on lagged as well as current levels of this variable. The regressions
we report would have the same fit if we included current and lagged levels of this variable,
instead of the change in the variable and the lagged level. We specify the regression as
above for two reasons: First, specifying the regression so that the change in the liquidity
variable influences the change in the exchange rate leads to a more natural interpretation.
Second, while the current and lagged levels of the variable are highly correlated, which
leads to multicollinearity and imprecise coefficient estimates, the change and the lagged
level are much less correlated.

Table 1 reports the regression findings for the nine exchange rates. The sample period
is February 2001 to July 2021. (Data on financial commercial paper start in January 2001.)
With the exception of Japan, the liquidity ratio variable has the expected sign and is statisti-
cally significant at the 1% level for all exchange rates.8 The relative inflation variable also
has the correct sign for all the currencies and is statistically significant for most countries.

It is common to look at short-term interest rate movements to account for the effects of
monetary policy changes on exchange rates. During much of our sample period, interest
rates were near the zero lower bound, and they do not appear to do a good job measuring
the monetary policy stance. We have included year-on-year inflation to capture the effects

7An exception is that inflation for Australia and New Zealand are reported only quarterly. We linearly
interpolate the data to get monthly series.

8We will discuss a theoretical explanation for the regression coefficient and why it could be different for
Japan after we present the model.
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of inflation targeting through unconventional monetary policy through the market’s antic-
ipation of the policy response to past inflation. When it − i∗t , the relative interest rate, is
included in the regressions for each of the nine countries relative to the US, it is usually not
statistically significant and none of the conclusions are altered by its inclusion.

Importantly, ∆LiqRatt, is not a price variable, but a quantity variable. That is, these
regressions above “explain” exchange rate movements but do not rely on other market
prices to do the job, as in many recent empirical studies of exchange rates. It is a balance
sheet variable that plays the pivotal role.In fact , one advantage of using data only from the
U.S. financial system is that the liquidity ratio constructed from such data does not embed
a financial price. For example, this constrasts with data that measures the share of dollar
assets held by foreign banks as a share of their total assets, which requires using the dollar
exchange rate to put all assets in comparable units, as in Adrian and Xie (2020)
Liquidity vs. Uncertainty. While we argue that funding risk drives the balance sheet
variables, a remaining concern is that funding risk is related to market uncertainty. What if
we include a direct measure of market uncertainty in the regressions? Several asset-pricing
studies have used VIX to quantify market uncertainty, and VIX has explanatory power
in accounting for the movements of many asset prices. However, VIX does not directly
measure uncertainty about bank dollar funding but may quantify some other dimensions
of uncertainty, or might also capture global risk, which might drive the dollar as in the
model of Farhi and Gabaix (2016). Rey (2013) has found a strong correlation between
VIX and private credit provided by banks, which suggests another dimension along which
global risk affect the economy through banks’ intermediation function.

In Table 2, we include the change in VIX along with the other variables. As expected,
VIX has positive coefficients in all cases (except again for Japan) and is statistically sig-
nificant. An increase in VIX is associated with an appreciation of the dollar. However,
the introduction of this variable does not reduce the significance of the liquidity ratio
variable for any of the countries. For most, it has only a minor effect on the magnitude of
the coefficient. This suggests that the uncertainty quantified by the VIX does not include
all of the forces that drive the liquidity ratio and lead to its positive association with dollar
appreciation.
Instrumental Variable Regression Results. The liquidity ratio is not exogenous in our
model or in the data. We will show that regressions based on simulated data from the
model generate a positive association between the change in the liquidity ratio and the
value of the dollar, in line with the empirical findings. Proposition 3 below shows that
the regression coefficient will depend on the variance and persistence of the shocks. We
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note that much of the statistical significance of the liquidity ratio in this regression arises
from the period of the Global Financial Crisis when funding to the financial system was
particularly uncertain, which is in line with our model.

The ambiguity about the relationship between the liquidity ratio and the value of
the dollar stems from the problem of sorting out supply versus demand shocks. Our
chief contribution is to demonstrate how greater uncertainty about funding for financial
intermediaries increases the demand for liquid dollar assets such as reserves or short-term
Treasury liabilities. The increased demand for these assets leads to an appreciation of the
dollar as banks raise their ratio of liquid assets to liabilities. But if the supply of liquidity
increases - for example, the Fed injects more reserves - the dollar will depreciate without
any change in the liquidity ratio—as our model demonstrates. The response of supply
factors work to weaken the relationship we see in Tables 1 and 2. Hence, we could conclude
that the demand effect must still be strong despite the confounding influence of changes in
the supply of liquid dollar assets.

We can use an instrumental variables approach to isolate the effects of uncertainty on
the demand for liquid assets—and the liquidity ratio—and their transmission to exchange
rates. One key measure we use is the monthly average of the intra-daily Fed Funds spread—
that is, the difference between the high and low Fed funds rate transacted on each day.
Greater idiosyncratic uncertainty about funding will lead banks to end up transacting at
different rates during the day—as in our model—so a greater spread indicates greater
funding uncertainty. We use the lagged change in the average spread as an instrument for
the adjustment in the liquidity ratio. We also use two other measures of uncertainty as
instruments: the cross-section standard deviation of the inflation rates of the G10 countries
at each time period, and the cross-section standard deviation of the rates of depreciation
for these currencies, as well as the lagged change in the liquidity ratio. The first row of
Table 6 shows the results of the first-stage regression. We observe a strong relationship
between the liquidity ratio and two of the measures of uncertainty—the Fed Funds spread
and the cross-sectional volatility of exchange rates. Table 3 reports the results from the
second-stage or IV regression, and we find strong support for the relationship between the
liquidity ratio and the value of the dollar for seven of the nine currencies. As with the OLS
regressions, the data show that an increase in the dollar liquidity ratio is associated with
an appreciatin of the dollar. The model still fits the Japanese yen poorly, and we now find
no statistical significance of the liquidity ratio on the Swiss franc exchange rate.
Robustness: Alternative Liquidity Measures. The results are robust to two alternative
alternative measures of the liquidity ratio. The first alternative measure includes “net
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financing” of broker-dealer banks. This is a measure of “funds primary dealers borrow
through all fixed-income security financing transactions,” as described in Adrian and
Fleming (2005). We include this as another source of short-term liabilities, similar to how
net repo financing is included as a measure of short-term liabilities in the liquidity ratio
calculated by the International Monetary Fund (2018). Figure 1 also plots this alternative
measure of the liquidity ratio, which is smaller than our baseline measure because it
includes another class of liabilities of the banking system in the US, while leaving the
measure of liquid assets unchanged.

Tables 6, A2, and 4 are analogous to Tables 1, 2, and 3, respectively, and Table 6 reports
the results of the first-stage regressions using the same instruments as above. The con-
clusions using this alternative measure are virtually unchanged qualitatively, though of
course the numerical values of the estimated coefficients are different. The liquidity ratio is
still highly statistically significant for all currencies, except for Japan’s, and, in the case of
the instrumental variable regressions, Switzerland’s.

Our empirical analysis also includes a third, broader measure of liabilities, the U.S.
M2 money supply less currency in circulation. This measure contains demand deposits,
small-denomination time deposits and deposits in money market funds. It is plotted in
Figure 1, with the right-hand-side axis providing the correct scale. The liquidity ratio is
smaller than the other two measures because it includes a broader measure of funding, but
Figure 1 shows that its movements are similar to the other two, though the proportional
increase during the global financial crisis is not as steep. We estimate the models analogous
to the ones reported above for the first two measures of the liquidity ratio, and display the
results in Tables A3, A4, and 5—and, again, the first-stage regressions using the volatility
instruments are reported in Table 6. In all the regressions, we see the same pattern of
positive coefficients on the liquidity ratio variable for all but for the Yen. There are fewer
statistically significant estimates in the OLS regressions, but the positive coefficients are
strongly statistically significant in all cases except the Swiss franc in the instrumental
variables estimates. We conclude that even with a very broad measure of funding to
financial intermediaries, the proxy for the system’s liquidity ratio has strong explanatory
power.
Robustness: Foreign Branches. We next consider a measure of the liquidity ratio taken
solely from foreign related banks in the U.S. The demand for liquid dollar assets by these
banks should be driven by the same considerations as those for U.S. banks headquartered
in the U.S. Davies and Kent (2020), Aldasoro, Eren and Huang (2021), and Aldasoro,
Ehlers and Eren (2022) note that foreign banks obtain much of their dollar funding from
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U.S. subsidiaries, so we hypothesize that the balance sheets of these subsidiaries reflects the
foreign bank corporation’s dollar liquidity/deposit demand. The measure of the liquidity
ratio is somewhat different than the measures we have used for all U.S. institutions, due to
data limitations. The latter is taken from the Fed’s H.8 release, but is similar to total reserve
balances, which we use in the previous measures, taken from the H.6 release. The main
difference is that we cannot separate out short-term funding for foreign-related banks, so
as a measure of funding we use deposits plus borrowings from the H.8 release. Using this
measure of the liquidity ratio for these U.S. subsidiaries of foreign banks we once again
see that the change in the liquidity ratio is a highly significant explanatory for seven of
the nine currencies—the exceptions again are Japan and Switzerland. Table 7 displays the
second-stage of the instrumental variable regression analogous to those we have described
previously—and the first-stage regression is displayed in Table 6. For the measure of liquid
assets, we use the sum of Treasury and agency securities (from the H.8 release) and cash
assets. As with other results, the VIX is also highly correlated, but the liquidity ratio is
capturing an independent source of uncertainty.
Sub-Periods. Naturally, much of the power of the change in the liquidity ratio to account
for changes in exchange rates comes during times when the global economy moves from
quiescent to turbulent times, or vice-versa. While the global financial crisis is helpful to
identify this relationship, it is not the only time period that pins down the estimates. We
show this by estimating the model over two sub-samples. The first includes the period
prior to the GFC, its subsidence, and the beginning of the European debt crisis, February
2001 to April 2012. The second period begins in May 2012, as markets begin to react to
efforts salvage the euro and just prior to Mario Draghi’s famous “do whatever it takes”
speech in July 2012, and continues to the end our sample in July 2021. Tables A5, A6, and
A7 report results for the first period, while the findings for the second period appear in
tables A8, A9, and A10. During the earlier period, with the exception of Japan, there is a
statistically significant positive relationship between the change in the log liquidity ratio
and the change in the log exchange rate for all currencies. The results are similar for the
second period: the estimated coefficients on the liquidity ratio variable are positive for
all but one of the currencies in the OLS and IV regressions. However, there are fewer
statistically significant coefficient estimates, though as many as seven of the eight positive
coefficients in the OLS remain significant at the 10 percent level or better.
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Table 1: Exchange Rates and Liquidity Ratio: Feb. 2001 – July 2021
Euro AU CAN JPN NZ NWY SWE CH U.K.

∆(LiqRatt) 0.227*** 0.256*** 0.127*** -0.134*** 0.287*** 0.187*** 0.212*** 0.141*** 0.165***
(4.839) (4.106) (2.723) (-2.846) (4.458) (3.125) (3.754) (2.724) (3.529)

πt − π∗
t -0.800*** -0.657*** -0.407** 0.011 -0.726*** -0.126 -0.465** -0.565*** -0.335**

(-3.972) (-2.998) (-1.982) (0.084) (-3.299) (-0.873) (-2.530) (-2.644) (-1.985)
LiqRatt−1 0.008* 0.005 0.007 0.002 0.004 0.010* 0.006 0.005 0.008

(1.890) (0.796) (1.554) (0.307) (0.696) (1.730) (1.109) (0.985) (1.628)
Constant -0.010*** -0.002 -0.006* -0.001 -0.005 -0.007 -0.008** -0.015*** -0.006

(-3.097) (-0.595) (-1.877) (-0.120) (-1.188) (-1.618) (-1.978) (-2.966) (-1.569)
N 246 246 246 246 246 246 246 246 246
adj. R2 0.11 0.07 0.03 0.02 0.09 0.03 0.06 0.03 0.04
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01

Table 2: Exchange Rates and Liquidity Ratio and VIX: Feb. 2001–July 2021
Euro AU CAN JPN NZ NWY SWE CH U.K.

∆(LiqRatt) 0.198*** 0.178*** 0.082* -0.119** 0.225*** 0.137** 0.175*** 0.126** 0.141***
(4.283) (3.250) (1.935) (-2.528) (3.762) (2.429) (3.206) (2.426) (3.044)

πt − π∗
t -0.668*** -0.386** -0.278 -0.007 -0.523** -0.051 -0.407** -0.517** -0.271

(-3.354) (-2.008) (-1.491) (-0.050) (-2.561) (-0.382) (-2.315) (-2.411) (-1.622)
∆VIXt 0.124*** 0.344*** 0.220*** -0.077** 0.285*** 0.239*** 0.189*** 0.064* 0.099***

(3.841) (8.995) (7.399) (-2.350) (6.792) (6.116) (4.991) (1.784) (3.163)
LiqRatt−1 0.009** 0.006 0.007* 0.002 0.005 0.010* 0.007 0.005 0.008

(2.059) (1.204) (1.770) (0.306) (0.995) (1.877) (1.330) (1.047) (1.562)
Constant -0.010*** -0.004 -0.006* -0.001 -0.006 -0.007* -0.008** -0.015*** -0.005

(-3.056) (-1.104) (-1.963) (-0.193) (-1.445) (-1.697) (-2.052) (-2.833) (-1.471)
N 246 246 246 246 246 246 246 246 246
adj. R2 0.16 0.30 0.21 0.04 0.23 0.16 0.14 0.04 0.08
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table 3: Exchange Rates and Liquidity Ratio Instrumental Variable Regression: Feb. 2001–
July 2021

Euro AU CAN JPN NZ NWY SWE CH U.K.
∆(LiqRatt) 0.370*** 0.553*** 0.441*** -0.247** 0.440*** 0.394** 0.373*** -0.006 0.463***

(2.997) (3.573) (3.702) (-2.122) (2.843) (2.587) (2.634) (-0.042) (3.189)
πt − π∗

t -0.834*** -0.733*** -0.534** 0.051 -0.662*** -0.194 -0.519*** -0.371 -0.634***
(-3.567) (-3.018) (-2.364) (0.359) (-2.884) (-1.208) (-2.631) (-1.451) (-2.642)

LiqRatt−1 0.011** 0.012* 0.014*** -0.001 0.008 0.016** 0.010* 0.004 0.017**
(2.380) (2.038) (2.706) (-0.161) (1.423) (2.418) (1.779) (0.703) (2.553)

∆VIXt 0.104*** 0.296*** 0.183*** -0.066* 0.260*** 0.212*** 0.168*** 0.077** 0.064*
(2.901) (6.584) (5.106) (-1.885) (5.665) (4.883) (4.092) (1.970) (1.701)

Constant -0.012*** -0.008* -0.012*** 0.002 -0.008* -0.011** -0.012** -0.011* -0.012**
(-3.329) (-1.838) (-2.988) (0.317) (-1.880) (-2.288) (-2.514) (-1.723) (-2.513)

N 245 245 245 245 245 245 245 245 245
t statistics in parentheses, StDev(Inf), StDev(XRate), lagged FFundsSpread and laggedΔ(LiqRat) instrument for ∆(LiqRat)
* p<0.1, ** p<0.05, *** p<0.01

Table 4: Exchange Rates and Alternative Measure of Liquidity Ratio Instrumental Variable
Regression: Feb. 2001–July 2021

Euro AU CAN JPN NZ NWY SWE CH U.K.
∆(LiqRat2t) 0.370*** 0.511*** 0.365*** -0.242* 0.389** 0.458*** 0.365** 0.017 0.545***

(2.764) (2.904) (3.058) (-1.882) (2.440) (2.625) (2.543) (0.133) (2.697)
πt − π∗

t -1.103*** -0.936*** -0.374 0.109 -0.736** -0.331 -0.542** -0.474 -1.038**
(-3.106) (-2.559) (-1.436) (0.521) (-2.585) (-1.502) (-2.314) (-1.575) (-2.419)

LiqRat2t−1 0.005 0.007 0.007** 0.000 0.004 0.011** 0.007* 0.003 0.010*
(1.600) (1.630) (2.008) (0.076) (1.021) (2.237) (1.779) (1.074) (1.950)

∆VIXt 0.113** 0.328*** 0.213*** -0.072* 0.292*** 0.211*** 0.192*** 0.086** 0.056
(2.477) (5.609) (4.978) (-1.676) (5.423) (3.845) (3.905) (2.136) (1.007)

Constant -0.007*** -0.001 -0.004* 0.003 -0.004 -0.003 -0.007** -0.011* -0.003
(-2.681) (-0.289) (-1.674) (0.509) (-1.478) (-1.213) (-2.173) (-1.914) (-1.226)

N 234 234 234 234 234 234 234 234 234
t statistics in parentheses. StDev(Inf), StDev(XRate), lagged FFundsSpread and laggedΔ(LiqRat2) instrument for ∆(LiqRat2)

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 5: Relationship of Exchange Rates and Alternative Measure of Banking Liquidity
Ratio (M2-Currency) Instrumental Variable Regression: Feb. 2001–July 2021

Euro AU CAN JPN NZ NWY SWE CH U.K.
∆(LiqRat3t) 0.180 0.367** 0.272** -0.220* 0.546*** 0.264* 0.338** -0.080 0.361***

(1.522) (2.566) (2.572) (-1.950) (3.242) (1.868) (2.424) (-0.608) (2.929)
πt − π∗

t -0.515** -0.450** -0.313* -0.043 -0.737*** -0.063 -0.388** -0.308 -0.307*
(-2.443) (-2.149) (-1.666) (-0.336) (-3.058) (-0.452) (-2.101) (-1.361) (-1.796)

LiqRat3t−1 0.008 0.010* 0.010** 0.006 0.007 0.013** 0.009 0.005 0.008
(1.556) (1.658) (2.117) (1.128) (1.047) (2.046) (1.615) (0.908) (1.463)

∆VIXt 0.147*** 0.360*** 0.229*** -0.092*** 0.305*** 0.254*** 0.208*** 0.077** 0.114***
(4.419) (9.164) (7.621) (-2.860) (6.984) (6.425) (5.296) (2.118) (3.544)

Constant 0.005 0.011 0.009* 0.007 0.004 0.015* 0.007 -0.002 0.008
(0.837) (1.450) (1.658) (1.211) (0.545) (1.892) (0.892) (-0.202) (1.228)

N 245 245 245 245 245 245 245 245 245
t statistics in parentheses, StDev(Inf), StDev(XRate), lagged FFundsSpread and laggedΔ(LiqRat3) instrument for ∆(LiqRat3)

* p<0.1, ** p<0.05, *** p<0.01

Table 6: First Stage Regressions for Each Measure of the Liquidity Ratio (∆LiqRat)
Constant St.Dev Inf St.Dev Dep ∆(LiqRat(-1)t) ∆(FFSpread(-1)t)

∆(LiqRat1t) -0.027*** 0.39 1.396*** 0.130** 0.035***
(2.88) (0.45) (25.14) (2.14) (2.64)

∆(LiqRat2t) -0.035*** 0.132 2.001*** -0.002 0.006
(-1.86) (0.08) (4.11) (-0.03) (0.23)

∆(LiqRat3t) 0.012* 0.299 0.605*** 0.459*** 0.038***
(-1.94) (0.57) (3.62) (8.13) (4.16)

t statistics in parentheses, using the Standard Deviation of Inflation
* p < 0.1, ** p < 0.05, *** p < 0.01

Convenience Yields and Liquidity. Finally, we note that when the movements in the
liquidity ratio are driven by changes in uncertainty about funding, there should be a rela-
tionship between the liquidity ratio and the relative convenience yield on U.S. government
securities. Jiang et al. (2021) and Engel and Wu (2018) have found a strong relationship
between movements in the liquidity yield on U.S. liquid assets relative to those issued by
other countries and the bilateral value of the U.S. dollar. While both the liquidity ratio and
the convenience yield are endogenous variables in our model, they should be correlated if
shocks to uncertainty are prominent. Table 8 shows estimates of the dynamic correlation of
these two variables. The measure of the relative convenience yield is the U.S. convenience
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Table 7: Correlation: Measures of Liquidity Ratio (LiqRat) and Convenience Yield
(ConvY d) on 1-year U.S. Treasury notes in Dynamic Regression

Const. ∆(Conv Ydt) ∆(Conv Yd(-1)t) ∆(Conv Yd(-2)t) ∆(LiqRat(-1)t) ∆(LiqRat(-2)t)
∆(LiqRat1t) 0.004 4.391* 9.370*** 1.541 0.162** 0.170**

(1.44) (1.72) (3.62) (0.63) (2.19) (2.31)
∆(LiqRat2t) 0.005 3.649 9.658* 6.298 0.022 0.057

(1.03) (0.74) (1.96) (1.29) (0.31) (0.79)
∆(LiqRat3t) 0.002 -1.210 6.674*** 5.000*** 0.478*** -0.003

(1.47) (-0.75) (4.07) (2.99) (6.80) (-0.04)
∆(LiqRat1t) 0.004 - 8.708*** 1.107 0.119* 0.163**

(1.56) (3.40) (0.45) (1.68) (2.21)
∆(LiqRat2t) 0.005 - 9.132* 5.772 0.012 0.055

(1.06) (1.88) (1.20) (0.17) (0.78)
∆(LiqRat3t) 0.002 - 6.916*** 5.233*** 0.483*** 0.006

(1.42) (4.34) (6.96) (3.18) (0.08)
t statistics in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 8: Relationship of Exchange Rates and Liquidity Ratio in Foreign Related Banks
Euro AU CAN JPN NZ NWY SWE CH U.K.

∆(LiqRatFRBt) 0.139*** 0.200*** 0.161*** -0.137*** 0.184*** 0.151*** 0.122*** 0.039 0.171***
(3.188) (3.622) (3.505) (2.764) (2.767) (2.485) (2.016) (0.734) (3.026)

πt − π∗
t -0.566*** -0.450*** -0.377* -0.098 -0.577*** -0.049 -0.399** -0.377*** -0.304*

(-2.519) (-2.053) (-1.898) (-0.737) (-2.455) (-0.347) (-2.079) (-1.735) (-1.733)
LiqRatFRBt−1 0.005* 0.006* 0.006* 0.004 0.003 0.007* 0.005* 0.003 0.004

(1.782) (1.902) (2.207) (1.366) (0.881) (2.177) (1.792) (1.167) (1.431)
∆(VIXt) 0.127*** 0.311*** 0.206*** -0.069** 0.279*** 2.33*** 0.190*** 0.072* 0.088**

(3.406) (7.598) (6.430) (-1.973) (5.982) (5.507) (4.593) (1.936) (2.501)
Constant 0.001 0.006 0.005 0.003 0.001 0.007 0.002 -0.006 0.004

(0.333) (1.452) (1.583) (0.860) (0.156) (1.771) (0.453) (-1.039) (1.017)
N 245 245 245 245 245 245 245 245 245
t statistics in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

yield relative to that of the other G10 currencies, as defined in Engel and Wu (2018). The
specification relates the change in the liquidity ratio to current and lagged changes in the
convenience yield and lagged changes in the liquidity ratio. For all three measures of the
liquidity ratio based on the U.S. banking system as a whole, there is a strong relationship,
particularly between the change in the liquidity ratio and the one-month lagged change in
the convenience yield. The regressions suggest that banks adjust their liquidity ratio with
a slight lag from when the change in uncertainty is reflected in convenience yields.
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3 A Model of Banking Liquidity and Exchange Rates

We present a dynamic equilibrium model of global banks that intermediate international
financial flows and are subject to idiosyncratic liquidity shocks. The model has two
economies, the EU and the US, with corresponding currencies and central banks. To
fix ideas, we think about the euro as the domestic currency and the dollar as the foreign
currency. There is a representative global household and a single final tradable good
produced by a continuum of global multinationals.

3.1 Environment

Timing. Time is discrete and of an infinite horizon. Every period is divided in two sub-
stages: a lending stage and a balancing stage. In the lending stage, banks make their equity
payout, Divt, and portfolio decisions. In the balancing stage, banks face liquidity shocks
and re-balance their portfolio.
Notation. We use an asterisk to denote the foreign currency (i.e., the dollar) variable and a
bar to denote a real variable. The vector of aggregate shocks is indexed byX . The exchange
rate is defined as the amount of euros necessary to purchase one dollar—hence, a higher e
indicates an appreciation of the dollar.
Preferences and budget constraint. Banks’ payouts are distributed to households that
own shares and have linear utility with discount factor β. A bank’s objective is to maximize
shareholders’ value, and therefore it maximize the net present value of dividends:

∞∑
t=0

βt ·Divt. (2)

Banks enter the lending stage with a portfolio of assets and liabilities and collect and make
the associated interest payments. The portfolio of initial assets is given by liquid assets, mt

and m∗t , which are in both euros and dollars, and loans bt, denominated in consumption
goods. Note that we refer to liquid assets as “reserves” for simplicity, but this term should
be understood as also encompassing government bonds—the important property, as we
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will see, is that these are assets that can be used as settlement instruments.9
On the liability side, banks obtain funding via demand deposits, dt and d∗t , discount

window loans, wt and w∗t , and net interbank loans, ft and f ∗t (which are negative if the
bank has lent funds). Deposit and interbank market loans have market returns given by id
and īf , while central banks set the corridor rates for reserves and the discount window,
which are im and iw, respectively. A yield it paid in period t is pre-determined in period
t− 1. Meanwhile, Rb is the real return on loans.

The bank’s budget constraint, expressed in foreign currency, is then given by

P ∗t Divt +
mt+1 − dt+1

et
+ bt+1P

∗
t +m∗t+1 − d∗t+1 ≤ P ∗t btR

b
t +m∗t (1 + im,∗t )− d∗t (1 + id,∗t )

− f ∗t (1 + if,∗t )− w∗t (1 + iw,∗t ) +
mt(1 + imt )− dt(1 + idt )− ft(1 + ift )− wt(1 + iwt )

et
. (3)

Withdrawal shocks. In the balancing stage, banks are subject to random withdrawal of
deposits in either currency. As in Bianchi and Bigio (2021), withdrawals have zero mean—
hence deposits are reshuffled but preserved within the banking system. Here, we also
assume in addition that the economy features aggregate risk. In particular, we assume that
the distribution of these shocks is time varying—below we describe other aggregate shock.
In particular, withdrawal shocks, denoted by ω, are drawn from a continuous distribution
with CDF and PDF denoted by Φt and φt respectively. When ω > 0, a bank receives an
inflow of deposits and when ω < 0, a bank faces an outflow of deposits.

The inflow and outflow of deposits across banks generates, in effect, a transfer of
liabilities. We assume that these transfers are settled using reserves of the corresponding
currency. Importantly, reserves must remain positive at the end of the period. We denote
by sjt the euro reserve balances of a bank upon facing a withdrawal shock ωjt . This balance
is given by the amount of euro reserves a bank brings from the lending stage minus the
withdrawals of deposits:

sjt = mt+1 + ωjtdt+1. (4)

We omit the superscript from bank portfolio choices because it is without loss of generality
9That is, our analysis is not about the management of scarce reserves per se, but more broadly about

liquidity management. As it is often discussed, banks have had abundant excess reserves for the most part
since the 2008 financial crisis—see however, the work by Copeland, Duffie and Yang (2021) showing that
reserves at various points in the post-crisis period were not so ample owing to the series of new liquidity
regulations. In any case, liquidity concerns have remained a first-order concern for financial institutions, as
evidenced by observed measures of liquidity premia as well as the Senior Financial Officer Survey, which is
our focus here.
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that all banks make the same choices in the lending stage.10 Higher liquidity holdings
mt+1makes it more likely that the bank will end with a surplus. If a bank faces a withdrawal
shock lower than −m/d, it will end with a deficit reserve balance. Otherwise, the bank has
a surplus. Similarly, we have the following balances in dollars: sj,∗t = m∗t+1 + ωj,∗t d∗t+1.

Interbank market. After the withdrawal shocks are realized, there is a distribution of
bank surplus balances and bank deficit balances in both currencies. We assume that there
is an interbank market for each currency, in which banks that have a deficit balance in
one currency borrow from those that have a surplus balance in that currency. These two
interbank markets behave symmetrically, so it suffices to show only how one of them
works.11

We model the interbank market as an over-the-counter (OTC) market, in line with
institutional features of this market (see Ashcraft and Duffie, 2007 and Afonso and Lagos,
2015). Modeling the interbank market using search and matching is also natural, con-
sidering that the interbank market is a credit market in which banks on different sides
of the market—surplus and deficit—must find a counterparty they trust. Our specific
formulation follows Bianchi and Bigio (2017; 2021) which in turn blends features from
Atkeson, Eisfeldt and Weill (2015) and Afonso and Lagos (2015).

As a result of the matching frictions, only a fraction of an individual bank’s surplus
(deficit) is lent (borrowed) in the interbank market. A bank with surplus sj is able to lend
a fraction Ψ+

t to other banks. The remainder surplus is kept in reserves. Conversely, a bank
that has a deficit is only able to borrow a fraction Ψ−t from other banks, and the remainder
deficit is borrowed at a penalty rate iwt . The penalty rate can be thought of as the discount
window rate or as an overdraft rate charged by correspondent banks that have access to
the Fed’s discount window.

The fractions Ψ+
t and Ψ−t are endogenous and depend on the aggregate reserve deficit

balances relative to surplus balances. Assuming a constant returns to scale matching
function, the probabilities depend entirely on market tightness, defined as θt ≡ S−t /S

+
t ,

where S+
t ≡

´ 1

0
max

{
sjt , 0

}
dj and S−t ≡ −

´ 1

0
min

{
sjt , 0

}
dj denote the aggregate surplus

and deficit, respectively. Notice that because m ≥ 0 and E(ω) = 0, we have that in
equilibrium, θ ≤ 1. That is, there is a relatively larger mass of banks in surplus than deficit.

The interbank market rate is the outcome of a bargaining problem between banks in
10As we will show below, the portfolios are indeterminate for an individual bank. Deposits, credit and

reserves are determined only in the aggregate.
11We assume a stark form of segmented interbank markets: dollar surpluses cannot be used to patch euro

deficits and vice versa. This assumption can be relaxed to some extent, but some form of segmentation of
asset markets is necessary both to obtain liquidity premia and to rule out Kareken and Wallace (1981)’s
exchange rate indeterminacy. In Section 4.4, we discuss an extension of the baseline model along this line.
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deficit and those in surplus. There are multiple trading rounds, in which banks trade
with each other. If banks are not able to match by the trading rounds, they deposit the
surplus of reserves at the central bank or borrow from the discount window. Throughout
the trading, the terms of trade at which banks borrow and lend—that is, the interbank
market rate—depend on the probabilities of finding a match in a future period.12 We used
if in the budget constraint (9) to denote the average interbank market rate at which banks
trade. Ultimately, we can define a liquidity yield function χ that captures the benefit of
having a real surplus s̃ (or the cost of having a real deficit) upon facing the withdrawal
shock as follows:

χ(θ, s̃;X,X ′) =

χ+(θ;X,X ′)s̃ if s̃ ≥ 0,

χ−(θ;X,X ′)s̃ if s̃ < 0
(5)

where χ+ and χ−are given by

χ−(θ;X,X ′) = Ψ−(θ)[Rw(X,X ′)−Rf (X,X ′)] + (1−Ψ−(θ))[Rw(X,X ′)−Rm(X,X ′)], (6)
χ+(θ;X,X ′) = Ψ+(θ)[Rf (X,X ′)−Rm(X,X ′)]. (7)

In these expressions, Ry(X,X ′) denotes the realized real rate of an asset or liability y

when the initial state is X and the next period state is X ′. Recall that the nominal rate is
pre-determined, but the realized real return depends on the inflation rate. In particular,
we have that Ry(X,X ′) ≡ (1 + iy(X))/(1 + π(X,X ′)), where π(X,X ′) ≡ P (X ′)/P (X)− 1

denotes the inflation rate. When it does not lead to confusion, we streamline the argument
(X,X ′) in these expressions. We will also use ‘bars’ to denote expected returns. That is,
R̄y ≡ E [Ry(X,X ′)|X] and χ̄ = E [χ(θ, s̃;X,X ′)|X].

Equation (6) reflects that a bank that borrows from the the interbank market or from
the discount window obtains the interest on reserves—hence, the cost of being in deficit is
given by Rf −Rm in the former and Rw −Rm in the latter. By the same token, (6) reflects
that the benefit from lending in the interbank market in the case of surplus is Rf −Rm.

Figure 2 presents a sketch of the timeline of decisions within each period. We next
describe the bank optimization problem.
Banks’ problem. The objective of a bank is to choose dividends and portfolios to maximize
(2) subject to the budget constraint. Critically, when choosing the portfolio, banks anticipate

12Multiple trading rounds imply that interbank market rates vary with the tightness of the interbank
market. With a single trading round, the interbank market rate would be a constant that depend on policy
rates but not on the interbank-market tightness.
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Figure 2: Timeline

how withdrawal shocks may lead to a surplus or deficit of reserves and the associated costs
and benefits of ending with these positions. We express the bank’s optimization problem
in terms of real portfolio holdings {b̃, m̃∗, d̃∗, d̃, m̃} and the real returns. Thus, we define
x̃t ≡ xt/Pt−1. The individual state variable is net worth, n, defined as the value of the real
assets minus liabilities at the beginning of the period. Given the initial net worth, the bank
problem consists of choosing the real portfolio and its dividends Div to maximize its value.
Recursively, the bank problem is:

v (n,X) = max
{Div,b̃,m̃∗,d̃∗,d̃,m̃}

Div + βE [v (n′, X ′)] (8)

subject to the budget constraint

Div+b̃+ m̃∗ + m̃ = n+ d̃+ d̃∗, (9)

where the evolution of bank net worth is given by

n′ = Rb(X)b̃+Rm(X,X ′)m̃+Rm,∗(X,X ′)m̃∗ −Rd(X,X ′)d̃−R∗,d(X,X ′)d̃∗︸ ︷︷ ︸
Portfolio Returns

+ χ∗(θ∗(X), m̃∗ + ω∗d̃∗;X,X ′) + χ(θ(X), m̃+ ωd̃;X,X ′)︸ ︷︷ ︸
Settlement Costs

. (10)

The evolution of n depends on the realized return on assets, but also on the realized
settlement costs.13 Because of the linearity of the banks’ payoffs and the objective function,
the value function is linear in net worth. Anticipating that in general equilibrium, there is

13To obtain (10), we use the definition of χ as expressed in (5)-(6) and the real returns. Implicit in the law
of motion for net worth is the convention that a bank that faces a withdrawal covers the associated interest
payments net of the interest on reserves.
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a finite demand for loans and deposits, we note that an equilibrium therefore requires that
Rb (X) = 1/β ≥ Rm (X,X ′) .14 The next lemma is an intermediate step toward the solution
of the bank under this condition.

Lemma 1. The solution to (8) is v (n,X) = n, and the optimal portfolio {m̃, d̃, m̃∗, d̃∗} solves

Π (X) = max
{m̃,d̃,m̃∗,d̃∗}

E
{ [
Rb(X)−Rd(X,X ′)

]
d̃−

[
Rb(X)−Rm(X,X ′)

]
m̃[

Rb(X)−R∗,d(X,X ′)
]
d̃∗ −

[
Rb(X)−R∗,m(X,X ′)

]
m̃∗[

χ(θ(X), m̃+ ωd̃;X,X ′)
]

+
[
χ∗(θ∗(X), m̃∗ + ω∗d̃∗;X,X ′)

]]}
. (11)

The first two lines in (11) represent the direct portfolio payoffs. In this case, only the
expectation over aggregate shocks is relevant. The second line constitutes the expected
liquidity costs/benefits, which depend on the portfolio of the bank and the idiosyncratic
withdrawal risk.

The bank portfolio problem is homogeneous of degree one. Thus, it must be that
in general equilibrium, expected real returns are such that Π(X) = 0 and the scale of
the portfolio is indeterminate at the individual bank level. Otherwise, banks could scale
their portfolio and obtain unbounded profits. On the other hand, the liquidity ratio is
determined. In effect, the kink in the liquidity cost function creates concavity in the bank
objective and risk-averse behavior. Finally, like the scale of the portfolio, dividends and
leverage are indeterminate at the individual level but determined at the aggregate level.
Non-financial sector. This section describes the non-financial block. This block is composed
of households that supply labor and save in deposits in both currencies. Some goods must
be purchased using deposits. Namely, some goods are purchased only with dollar deposits,
some are purchased only euro deposit, and some goods don’t require any means of payment.
Firms are multinationals that use labor to produce the final good and are subject to working
capital constraints, giving rise to a demand for loans. Goods trade is costless and as a
result, the law of one price holds. To further enhance tractability, we work with quasi-linear
preferences for households. As we show in Appendix F we obtain the following schedules
for the real aggregate loan demand by firms, Bd

t , and real aggregate deposit supply for
14If the return on loans were lower than 1/β, banks would not invest in loans. Conversely, if the return on

loans (or reserves) were higher than 1/β, banks would inject infinite equity in the bank, and the bank’s value
would be infinite.
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deposits in euros and dollars, Ds
t and D∗,st :

Bd
t = Θb

t

(
Rb
t+1

)εb
, εb < 0, Θb

t > 0, (12)
Ds
t+1 = Θd

t

(
R̄d
t+1

)εd
, εd > 0, Θd

t > 0, (13)

D∗,st+1 = Θ∗,dt

(
R̄∗,dt+1

)εd∗
, εd

∗
> 0, Θ∗,dt > 0, (14)

where εb is the semi-elasticity of credit demand and {εd, εd∗} are the semi-elasticities of the
deposit supplies with respect to the real returns, while the Θ terms are scale coefficients.
These parameters are linked to the production structure and preference parameters in the
micro-foundation.
Government/Central Bank. The two central banks choose the nominal rates for reserves,
imt , and the discount window, iwt , as well as the nominal supply of reserves {Mt+1,M

∗
t+1

}
and nominal discount window loans Wt. To balance the payments on reserves and the
revenues from discount window loans, we assume that central banks passively adjust lump
sum taxes (or transfers). Because households have linear utility in the special good, these
lump sum taxes have no implications. We have the following budget constraint for the
euro:

Mt+1 + Tt −Wt+1 = Mt(1 + imt )−Wt(1 + iwt ). (15)

An identical budget constraint holds for the dollar.
We note that we only consider one type of government liability: we not not distinguish

between government bonds and central bank reserves. Our analysis, however, can be imme-
diately extended to allow for a meaningful distinction between reserves and government
bonds, following Bianchi and Bigio (2021).

3.2 Equilibrium

We study recursive competitive equilibria in which all variables are indexed by the vector
of aggregate shocks, X . We consider shocks to the nominal interest rates on reserves, the
deposit supply, and the volatility of withdrawals. Without loss of generality, we restrict to
a symmetric equilibrium, in which all banks choose the same portfolios.

Definition 1. Given central bank policies for both countries {M(X), im(X), iw(X),W (X)},
{M∗(X), im,∗(X), iw,∗(X),W ∗(X)}, a recursive competitive equilibrium is a pair of price
level functions {P (X), P ∗(X)}, exchange rates e(X), real returns for loans Rb(X), nominal
returns for deposits {id(X), id,∗(X)}, an interbank market rate if (X), market tightness
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θ(X), bank portfolios {d̃(X), d̃∗(X), m̃(X), m̃∗(X), b̃(X)}, interbank and discount window
loans {f(X), f ∗(X), w(X), w∗(X)}, and aggregate quantities of loans {B(X)} and deposits
{D(X), D∗(X)} such that

(i) Banks choose portfolios {d̃(X), d̃∗(X), m̃(X), m̃∗(X), b̃(X)} to maximize expected
profits, as stated in (11).

(ii) Households are on their deposit supply and firms are on their loan demand. That is,
equations (12)-(13) are satisfied given real returns and quantities {B(X), D(X), D∗(X)}.

(iii) The law of one price holds P (X) = P ∗(X)e(X).

(iv) Markets clear for deposits d̃(X) = Ds(X) and d̃∗(X) = Ds,∗(X); reserves m̃ (X)P (X) =

M(X) and m̃∗(X)P ∗(X) = M∗(X); loans b̃(X) = B(X); and the interbank markets
Ψ+(X)S+ = Ψ−(X)S− and Ψ+,∗(X)S+,∗ = Ψ−,∗(X)S−,∗.

(v) For both currencies, market tightness θ(X) is consistent with the portfolios and the
distribution of withdrawals, while the matching probabilities {Ψ+(X),Ψ−(X)} and
interbank market rates if (X) are consistent with market tightness θ(X).

4 Characterization

4.1 Liquidity Premia and Exchange Rates

We first describe the exchange rate determination. We combine both reserve-market clearing
conditions, the law of one price, and the deposit clearing conditions, to arrive at a condition
for the determination of the nominal exchange rate:

e(X) =
P (X)

P ∗(X)
=

M(X)/m̃(X)

M∗(X)/m̃∗(X)
. (16)

Condition (16) is a Lucas-style exchange rate determination equation, but rather than
following from cash-in-advance constraints, it is derived from banks’ liquidity management
decisions. Given a real demand for reserves in euros and dollars that emerges from the
bank portfolio problem (11), the dollar will be stronger (i.e., higher e) the larger is the
nominal supply of euro reserves relative to that of dollar reserves. Similarly, for given
nominal supplies of euro and dollar reserves, the dollar will be stronger the larger is the
relative demand for real dollar reserves. The novelty relative to the canonical Lucas-style
model is that liquidity factors play a role in the real demand for currencies, and hence they
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affect the value of the exchange rate. We now turn to analyzing the determinants of the
real demand for reserves in each currency.

To understand how liquidity factors affect the exchange rate through the demand for
reserve balances, let us inspect the portfolio problem (11). We denote by µ = m̃/d̃ the
banks’ liquidity ratio and note that sj < 0 if and only if ωj < −µ. Using the expression for
the liquidity yield function (5), and recalling that ‘bars’ denote expected returns, we can
express the first-order condition with respect to m̃ as

Rb − R̄m = (1− Φ(−µ))χ̄+(θ) + Φ(−µ)χ̄−(θ). (17)

At the optimum, banks equate the expected real marginal return on loans, Rb, with the
expected real marginal return on reserves. The latter is given by the expected real interest
on reserves R̄m plus a random marginal liquidity value. If the bank ends up in surplus,
which occurs with probability 1−Φ(−µ), the expected real marginal value is χ̄+. If the bank
ends up in deficit, which occurs with probability Φ(−m̃/d̃), the expected real marginal
value is χ̄− (because the bank spares the marginal cost of borrowing in the interbank
market). We label the difference in yields as the bond premium, BP ≡ Rb − R̄m and
similarly BP∗ ≡ Rb − R̄m,∗.

We have an analogous condition for m∗:

Rb − R̄m,∗ = (1− Φ∗(−µ∗))χ̄+,∗(θ∗) + Φ∗(−µ∗)χ̄−,∗(θ∗). (18)

Combining (17) and (18) and using the law of one price 1+π = E [(1 + π∗)e′/e], we obtain a
liquidity premium adjusted interest parity condition. In particular, denoting the total derivative
of χ̄ with respect to m (i.e., the right-hand side of 17) by χ̄m∗ (s∗; θ∗), we have that

Et
{

1

1 + πt+1

[
1 + imt − (1 + im,∗t ) · et+1

et

]}
= E [χ̄m∗ (s∗; θ∗)− χ̄m (s; θ)]︸ ︷︷ ︸

DLP

. (19)

This equation establishes that the difference in the real return on reserves in the two
currencies is equal to the difference in the marginal liquidity values. We refer to the
difference in marginal liquidity values as the dollar liquidity premium, the variable DLP .

Without a dollar liquidity premium, (19) would reduce to a canonical UIP that equates,
to a first order, the difference in nominal returns to the expected depreciation. However,
whenever the marginal liquidity value of a dollar is larger than that of a euro (i.e.,. when
DLP > 0), a lower nominal interest rate in dollars that in euros is consistent with equilib-
rium, even if the exchange rate is expected to be constant. Note that because banks are risk
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neutral, there is no risk premium, and the deviation from UIP emerges entirely through
liquidity. A way to capture the special role of the dollar in short-term funding, which we
discussed in Section 2, is to assume that dollar funding is riskier than in euros. When this
is the case, the dollar commands a convenience yield.

Finally, we have the first-order conditions with respect to deposits in both currencies:

Rd = R̄m + Eω [χ̄m (s; θ)− χ̄d (s; θ)] and R̄d,∗ = R̄m,∗ + Eω∗ [χ̄m∗ (s∗; θ∗)− χ̄d∗ (s∗; θ∗)] . (20)

where χ̄d denotes the total derivative of χ̄ with respect to d. Like (19), these conditions
imply that the expected real return on dollar and euro deposits may not be equated. In
particular, a higher marginal liquidity cost of dollar deposits will be a force towards a lower
real return of dollar deposits.

4.2 Effects of Shocks

We now examine how the exchange rate and liquidity premia vary with various shocks.
Toward an analytical characterization, it is convenient to momentarily assume that the
supply of deposits is perfectly inelastic in both currencies. This assumption sharpens the
results, but does not alter the essence of the mechanism, as we then show numerically.

We focus on how shocks to the dollar alter the exchange rate and the DLP . The same
shocks to the euro interbank market will carry the opposite effects. Moreover, because in
this version of the model, Rb is constant and the deposit supplies are inelastic, shocks to
the dollar will not affect BP . By contrast, the DLP will move in tandem with BP∗, a result
that speaks directly to a literature connecting the liquidity premium of dollar denominated
assets to the exchange rate (Liao, 2020; Jiang et al., 2021; Engel and Wu, 2018).

A useful object to characterize the effects of various shocks is the derivative of the DLP
with respect to the dollar liquidity ratio:

DLPµ∗ =
(
(1− Φ∗(−µ∗)) · χ̄∗,+θ∗ + Φ∗(−µ∗) · χ̄∗,−θ∗

)︸ ︷︷ ︸
effect on average interbank rates

·∂θ
∗

∂µ∗
− φ∗(−µ∗) ·

(
χ̄∗,− − χ̄∗,+

)︸ ︷︷ ︸
liquidity risk exposure

< 0.

This derivative captures are two effects. First, a higher liquidity ratio reduces the interbank-
market tightness θ, thus easing the settlement frictions and reducing the average interbank
rates. This general equilibrium effect reduces the liquidity premium. Second, a higher
liquidity ratio reduces the probability that a an individual bank ends with a deficit. Because
the cost of deficits is higher than the benefit of surpluses, this partial equilibrium effect
also reduces the liquidity premium.
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With this expression in hand, we are to characterize the effects of a shocks.
Shocks to supply of dollar funding. A first question of interest is what are the effects of
an increase in the funding of banks denominated in dollars. Since the deposit supply is
inelastic, we can think of this as a shock to the quantity of D∗—with an elastic supply, this
is a shock to the scale Θ∗.

Proposition 1 (Funding level shock). Consider an increase in the real supply for dollar deposits.
We have the following:
1) If the shock is i.i.d, then the shock appreciates the dollar, reduces the dollar liquidity ratio, and

raises the DLP . In particular,

d log e

d logD∗
= − DLPµ∗

Rb −DLPµ∗µ∗
∈ (0, 1) ,

d log µ∗

d logD∗
= − Rb

Rb −DLPµ∗µ∗
∈ (−1, 0) ,

and dDLP = R̄m,∗d log e > 0.

2) If the shock is permanent, then the shock appreciates the dollar one for one, and does not change
the liquidity ratio nor the DLP :

d log e∗

d logD∗
= −d logP ∗

d logD∗
= 1, and dµ∗ = dDLP = 0.

Proposition 1 establishes that a higher supply of dollar deposits appreciates the dollar
regardless of whether the shock is temporary or permanent. The logic is simple: a higher
amount of real dollar deposits increases the demand for real dollar reserves. As banks have
more dollar liabilities, there is a higher marginal value from dollar reserves. Given a fixed
nominal supply of reserves, the increase in demand leads to an appreciation of the dollar.

The increase in the supply of dollar deposits has different implications for liquidity
premia depending on whether the shock is temporary or permanent. When the shock is
temporary, the exchange rate is expected to revert to the lower initial value in the following
period. Given nominal rates, this reduces the expected real return of holding dollar
reserves and the demand for dollar reserves fall for an individual bank. In equilibrium,
dollar reserves must have a higher marginal liquidity value, and there is a rise in the DLP .
Overall, we then have that a temporary increase in the supply of dollar deposits, the dollar
appreciates, the dollar liquidity ratio falls, and the DLP increases.

When the shock is permanent, the effect on the exchange rate is also expected to be
permanent. In the absence of any expected depreciation effects, the DLP must remain
constant. Thus, in equilibrium, the outcome is that banks increase their holdings of dollar
reserves in real terms in proportion to the increase in the supply of deposits. Since the
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supply ofM∗ is fixed, the amount of goods that can be bought with one dollar must increase,
and this appreciates the dollar.15

Shocks to dollar funding risk. Next, we characterize the effects of a rise in funding risk.
For that purpose, it is useful to index Φ by a parameter that captures the volatility of
withdrawals, σ. We use the following index:

Assumption 1. The distribution of shocks Φ∗(ω;σ∗) satisfies Φ∗σ∗ (ω;σ∗) > 0 for any ω < 0.

This assumption provides an ordering to a family of distributions Φ. The implication is
that as we increase σ∗, the risk of ending with a reserve deficit increases for any µ∗. Hence,
a shock to σ∗ captures greater funding risk which we characterize in the next proposition.

Proposition 2 (Funding risk shock). Consider an increase in the dollar funding risk, σ∗. Suppose
that Assumption 1 holds.
1) If the shock is i.i.d, then the shock appreciates the dollar, raises the dollar liquidity ratio, and

increases the DLP . In particular,

d log e

d log σ∗
=
d log µ∗

d log σ∗
=

DLPσ∗σ∗
Rb −DLPµ∗µ∗

> 0, and dDLP =R̄m,∗d log e > 0.

2) If the shock is permanent, then the shock appreciates the dollar, raises the liquidity ratio, and the
DLP remains constant. In particular,

d log e

d log σ∗
=
d log µ∗

d log σ∗
= −DLPσ∗σ

∗

DLPµ∗µ∗
and dDLP =0

Proposition 2 presents a central result. In response to a rise in the dollar funding risk,
the dollar appreciates, and there is an increase in the dollar liquidity ratio and the DLP .
Intuitively, with a larger dollar funding risk, banks demand a greater amount of real dollar
reserves. With the nominal supplies given, this must lead to an appreciation of the dollar.
Again, there is a relevant distinction between temporary and permanent shocks. When
the shock is temporary, the expected depreciation of the dollar reduces the expected real
return of holding dollar reserves. Given the nominal rates, this implies that the DLP must
be larger in equilibrium for (19) to hold. When the shock is permanent, the volatility shock
appreciates the dollar without any effects on the DLP . Unlike the case of the shock to the
scale of dollar funding, in this case the liquidity ratio increases together with the exchange

15Constant returns to scale in the interbank matching technology is key for this result. As banks propor-
tionally scale up dollar deposits and reserves, given the same real returns on dollar and euro reserves, the
original liquidity ratio remains consistent with the new equilibrium.
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rate. In equilibrium, therefore, the increase in the liquidity ratio offsets the higher volatility,
and that is why the DLP remains constant. The magnitude of the response is proportional
to the magnitude of the response of the dollar liquidity premium to σ∗, DLPσ∗ > 0.

(a) Exchange Rate

scale of dollar funding, in this case the liquidity ratio increases together with the exchange
rate. In equilibrium, therefore, the increase in the liquidity ratio offsets the higher volatility,
and that is why the DLP remains constant. The magnitude of the response is proportional
to the magnitude of the response of the dollar liquidity premium to σ∗, DLPσ∗ > 0.
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Figure 3: Equilibrium for different values of dollar funding risk

Proposition 2 characterizes the effects of changes in volatility for i.i.d. or permanent
shocks, and perfectly inelastic deposit supply schedules. Yet, the effects hold for mean-
reverting processes and general elasticities: Based on a calibration to be described below,
in Figure 3 we obtain results that fall in the middle between the i.i.d. and permanent
shock. That is, we observe that a higher funding risk appreciates the dollar (panel a) and
lowers the expected return on dollar bonds relative to euros (panel b), reflecting the larger
dollar liquidity premium. In addition, we can see a rise in the differential rate on deposits
(panel c). That is, the rate on euro deposits increases relative to the dollar rate as the rise in
volatility makes euro deposits more attractive. Finally, we also see an increase in the dollar
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(c) Liquidity Ratios (d) Real Deposit Rates

Figure 1: Equilibrium for di�erent values of dollar funding risk

Proposition 2 characterizes the e�ects of changes in volatility for i.i.d. or
permanent shocks, and perfectly inelastic deposit supply schedules. Yet, the
e�ects hold for mean-reverting processes and general elasticities: Based on a
calibration to be described below, in Figure 1 we obtain results that fall in the
middle between the i.i.d. and permanent shock. That is, we observe that a
higher funding risk appreciates the dollar (panel a) and lowers the expected
return on dollar bonds relative to euros (panel b), re�ecting the larger dollar
liquidity premium. In addition, we can see a rise in the di�erential rate on
deposits (panel c). That is, the rate on euro deposits increases relative to the
dollar rate as the rise in volatility makes euro deposits more attractive. Finally,
we also see an increase in the dollar liquidity ratio that is concomitant with a
reduction in the euro liquidity ratio (panel d).

Connecting the theoretical and empirical results. The empirical results
in Section ?? establish a positive correlation between the strength of the dollar
and the liquidity ratio. The theoretical results in Propositions 1 and 2 link
funding level and funding risk shocks to the liquidity ratio and the exchange
rate. The results suggest that dollar funding risk may drive a positive correlation
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Connecting the theoretical and empirical results. The empirical results
in Section ?? establish a positive correlation between the strength of the dollar
and the liquidity ratio. The theoretical results in Propositions 1 and 2 link
funding level and funding risk shocks to the liquidity ratio and the exchange
rate. The results suggest that dollar funding risk may drive a positive correlation
between the liquidity ratio and the exchange rate, whereas dollar funding-level

5

Figure 3: Equilibrium for different values of dollar funding risk

Proposition 2 characterizes the effects of changes in volatility for i.i.d. or permanent
shocks, and perfectly inelastic deposit supply schedules. Yet, the effects hold for mean-
reverting processes and general elasticities: Based on a calibration to be described below,
in Figure 3 we obtain results that fall in the middle between the i.i.d. and permanent
shock. That is, we observe that a higher funding risk appreciates the dollar (panel a) and
lowers the expected return on dollar bonds relative to euros (panel b), reflecting the larger
dollar liquidity premium. In addition, we can see a rise in the differential rate on deposits
(panel c). That is, the rate on euro deposits increases relative to the dollar rate as the rise in
volatility makes euro deposits more attractive. Finally, we also see an increase in the dollar
liquidity ratio that is concomitant with a reduction in the euro liquidity ratio (panel d).
Connecting the theoretical and empirical results. The empirical results in Section 2 estab-
lish a positive correlation between the strength of the dollar and the liquidity ratio. The
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theoretical results in Propositions 1 and 2 link funding level and funding risk shocks to the
liquidity ratio and the exchange rate. The results suggest that dollar funding risk may drive
a positive correlation between the liquidity ratio and the exchange rate, whereas dollar
funding-level shocks predict the opposite correlation.

Toward shedding further light on the connection between the theoretical and empirical
results, we generalize the results in Propositions 1 and 2 to mean-reverting shocks, under a
local approximation around the steady state. Assume that the shocks follow a log AR(1)
process

ln (xt) = (1− ρx) ln (xss) + ρx · ln (xt−1) + Σxεxt , for any x∈ {D∗, σ∗} (21)

where ρx is the mean-reversion rate of x and Σx its standard deviation of innovations. We
then have the following lemma.

Lemma 2 (Persistent shock). Consider shocks {D∗t , σ∗t } that follow the process in (21) and
suppose that Assumption 1 holds. Then, we have the following results about small deviations of
shocks near the steady state:
i) In response to a small deviation to D∗ near the steady state:

εeD∗ ≡
log e− log ess

logD∗ − logD∗ss
≈ −DLP∗µ∗µ∗

(1− ρD∗)Rb −DLP∗µ∗µ∗
∈ (0, 1)

and
εµ
∗
D∗ ≡

log µ∗ − log µ∗ss
logD∗ − logD∗ss

≈ − (1− ρD∗)Rb

(1− ρD∗)Rb −DLP∗µ∗µ∗
∈ (−1, 0) .

ii) In response to a small deviation near σ∗ss:

εµ
∗
σ∗ ≡

log µ∗ − log µ∗ss
log σ∗ − log σ∗ss

= εeσ∗ ≡
log e∗ − log e∗ss
log σ∗ − log σ∗ss

≈ DLP∗σ∗dσ∗
(1− ρσ∗)Rb −DLP∗µ∗µ∗

> 0.

Using the results in Lemma 2, we now formally establish the predictions of the model
for univariate regressions in the following proposition.

Proposition 3. Consider a steady state. Then, up to a first order, the regression coefficient of the
change in the exchange rate against the change in the liquidity ratio is:

βeµ∗ =
∑

x∈{σ∗,D∗}

εex
εµ
∗
x

·wx,
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where
εeσ∗

εµ
∗
σ∗

= 1 and εeD∗

εµ
∗
D∗

=
DLP∗µ∗µ∗

(1− ρD∗)Rb
< 0.

with weights given by

wσ∗ =

(
εµ
∗
σ∗Σ

σ∗
)2 (

1−
(
ρD
∗)2
)

(
εµ
∗
σ∗Σ

σ∗
)2 (

1− (ρD∗)2)+
(
εµ
∗
D∗Σ

D∗
)2 (

1− (ρσ∗)2) = 1−wD∗ .

The takeaway of Proposition 3 is that the regression coefficient is a weighted average
of the effects of σ∗ and D∗ on the correlation between the changes in the exchange rate
and the liquidity ratio. In Section 2, we obtained a positive coefficient for all currencies
except Japan. Proposition 3 helps us interpret this empirical pattern. Both the funding level
and funding risk shocks produce the co-movement between the FX and the convenience
yield documented by Jiang, Krishnamurthy and Lustig, 2021 and Engel and Wu (2018).
However, both shocks lead to opposite predictions about the relationship between the FX
and the liquidity ratio. A virtue of the model, is that it establishes that funding risk, and
not total dollar funding, is what explains the data. We come back to this observation after
we calibrate and estimate the model.

4.3 Central Bank Policies

Nominal Rates. We now study how monetary policy affects the exchange rate. We start by
considering the effect of a change in the nominal policy rates.

Proposition 4 (Effects of Changes in Policy Rates). Consider an increase in the interest rate on
dollar reserves, i∗,m , holding fixed the policy spread, i∗,w − i∗,m.
1) If the shock is i.i.d, the shock appreciates the dollar less than one for one, raises the liquidity ratio,

and reduces the DLP :

d log e

d log (1 + i∗,m)
=

d log µ

d log (1 + i∗,m)
=

R̄m,∗

Rb −DLPµ∗ · µ∗
∈ (0, 1) and

dDLP = R̄m,∗ (d log e− d log (1 + im,∗)) < 0.

2) If the shock is permanent, the shock appreciates the dollar, raises the liquidity ratio, and reduces
the DLP :

d log e

d log (1 + i∗,m)
=

d log µ∗

d log (1 + i∗,m)
= − R̄m,∗

DLPµ∗ · µ∗
> 0, and

dDLP = −R̄m,∗d log(1 + im,∗) < 0.
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Proposition 4 establishes that in response to an increase in the US nominal rate, the
dollar appreciates, the liquidity ratio increases, and the liquidity premium falls. This
occurs regardless of whether the shock is temporary or permanent. The appreciation of
the dollar follows a standard effect: a higher nominal rate leads to a larger demand for
dollars, which in equilibrium requires a dollar appreciation. In turn, given a fixed nominal
supply of dollar reserves, there is an increase in the real amount of reserves. In the absence
of liquidity premia, the difference in nominal returns across currencies would be exactly
offset by the expected depreciation of the dollar, following the current revaluation. With
a liquidity premium, however, the expected depreciation is not one for one: given the
larger abundance of real dollar reserves, there is a decrease in the marginal value of dollar
reserves, together with a reduction in dollar liquidity premium.

This result breaks the tight connection between interest-rate differentials and expected
depreciation, which is at the heart of models featuring the Fama (1984) puzzle. In models
where uncovered interest parity holds, an increase in the dollar interest rate leads to a
one-for-one expected depreciation of the dollar, and no change in the expected excess
return on euro reserves. Here, the exogenous increase in the dollar interest rate reduces
the dollar liquidity premium, hence reducing the ex ante excess returns to euro reserves.
Open-Market Operations. Finally, we consider open-market operations. In the model
description, expansions in M are implemented with transfers—that is, helicopter drops.
In practice, central banks conduct open-market operations purchasing assets and issuing
central bank liabilities. Given that we interpretM as capturing central bank and government
liabilities, we are interested in unconventional open-market operations. For that, we now
modify the model and assume that there is an outstanding amount of private securities St,
some of which are held by households, Sht , and some of which are held by the central bank,
Sgt . We assume that these securities are perfect substitutes for private deposits. The joint
demand for sum deposits and securities is given by

Dt + Sht = Θd
t

(
R̄d
t+1

)εd∗
.

The government budget constraint is modified by adding (1 + idt
)
Sgt to the sources of funds

and Sgt+1 to the uses, to the right-hand side and left-hand side of (15) respectively. We
have analogue conditions for dollars. Next, we characterize the effects of an open-market
purchase of securities in the US.
Proposition 5 (Effects of open-market operations). Consider a purchase of private securities
financed with reserves by the central bank in the US. Let Υ∗ = P ∗SG,∗

M∗ denote the initial value of the
securities as a function of reserves.
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1) If the change in the balance sheet is reversed in the following period, the shock increases depreciates
the dollar, raises the liquidity ratio, and reduces the DLP :

d log e

d logS∗,gt
=
DLP∗µ∗µ∗ (1− µ∗)BP∗
Rb − (1−Υ∗)DLP∗µ∗µ∗

< 0,

d log µ∗

d logS∗,gt
=

RbΥ∗ (1− µ∗)
Rb − (1− Γ∗)DLP∗µ∗µ∗

> 0, and dDLP = R̄m,∗d log e < 0.

2) If the change in the balance sheet is permanent, the shock depreciates the dollar, and does not
change the liquidity ratio nor the dollar liquidity premium:

d log e

d logS∗,G
= − (1− µ∗) Υ∗

1−Υ∗
≤ 0.

Proposition 5 establishes that a temporary open market operation—by increasing the
nominal supply of reserves—leads to a temporary depreciation of the dollar. Given nominal
rates on reserves, the expected appreciation leads to an increase in the expected return on
dollar reserves and an increase in the real holdings of dollar reserves. In equilibrium, there
is there an increase in the liquidity ratio and a decrease in the DLP . For permanent shocks,
instead, we find that the exchange rate depreciates permanently and there are no effects on
liquidity ratio nor the DLP .16

4.4 Extensions

Dollars as Collateral. In the model, the key asymmetry needed to to deliver a positive
DLP , is that the dollar funding risk must be greater, an assumption consistent with the
prevalence of the US dollar in short-term liability funding. The model, however, can be
adapted to allow for an asymmetry in settlement frictions in a way that also generates a
positive dollar liquidity premium without differences in the dollar and euro funding risk.
Specifically, assuming that banks can transfer dollar reserves to settle withdrawals of euro
deposits, it follows that if banks are in deficit of euro reserves, they use dollar reserves
before going to the euro interbank market. With this, the return on euro reserves must
exceed the one on dollar reserves, even if the funding risks are the same in both currencies.

16Our model has also predictions for the effects of foreign exchange interventions, where a central bank
swaps domestic liabilities for foreign assets. We leave this for future research.
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Risk Premia. To focus squarely on liquidity and highlight the novel channels of our theory,
we have assumed risk-neutral banks. In doing so, we have abstracted from the “risk premia
view” that postulates that the dollar appreciates in bad times, and as a result, episodes of
high volatility, coupled with risk aversion, imply that the dollar appreciates in times of
high uncertainty. Here, we extend our framework to allow for risk premia and establish a
connection between risk premia and liquidity premia.

We assume that banks maximize profits using a stochastic discount factor Λ(X,X ′),
which captures the risk aversion of shareholders. Incorporating this feature in the portfolio
problem (11), we have that

E
[
Rm
t+1 −Rm,∗

t+1

]
= E [χm∗ (s∗; θ∗)− χm (s; θ)]

+
COV (Λt+1, χm∗ (s∗; θ∗)− χm (s; θ)) + COV

(
Λt+1, R

m,∗
t+1 −Rm

t+1

)
E [Λt+1]

. (22)

Relative to (19), (22) has a risk premium associated with the liquidity premium, which
is the first covariance term. In addition, there is now an additional “safety premium” term
driving the difference between expected returns on the dollar and euro liquid assets. The
safety premium represents the covariance between the difference in the realized yields
of dollar and euro liquid assets and the stochastic discount factor. If the dollar tends to
appreciate in bad times (i.e., when marginal utility is high), this implies that dollar assets
will have a lower expected rate of return.

The two premia, the liquidity premium and the safety premium, interact in an important
way. As explained in Proposition 2, the dollar appreciates in response to a rise in the
volatility of withdrawal shocks through a higher DLP . To the extent that the rise in the
volatility of withdrawals coincides with a high value for Λ(X,X ′), a volatility shock would
further increase the safety premium as the return on dollar assets rises when payoffs are
more valuable. Thus, modeling an endogenous liquidity premium is likely to enhance the
importance of the risk premium as a driver of exchange rates, a point that may resolve the
reserve currency paradox in risk-premium models documented in Maggiori (2017).17

CIP Deviations. Our baseline model does not include an explicit forward market. To speak
to the observed deviations from covered interest parity (CIP), we now allow for a forward
market, which we assume to be perfectly competitive. A forward traded at time t promises

17Despite the prevalent view that risk premia may make the dollar a safe haven, Maggiori (2017) shows, in
a standard model of financial intermediation, that the dollar tends to actually depreciate in bad times. The
reason is that US households are optimally more exposed to aggregate risk and therefore face larger losses in
bad times relative to those faced by the rest of the world.
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to exchange one dollar for êt,t+1 euros in the lending stage in the following period.18 The
first-order condition with respect to the quantity of forwards purchased can be expressed
as

0 = E
[

Λt+1

1 + πt+1

· (et+1 − êt,t+1)

]
. (23)

Let us examine the CIP deviation constructed using reserves. In the literature, this is
often referred to as the “Treasury basis”—that is, the yield on an actual US Treasury (the
analogue of reserves in our model) minus the yield on an equivalent synthetic US Treasury.
Denoting by CIP the deviation from covered interest parity, we have that by definition

CIP = (1 + imt )− (1 + im,∗t )

(
êt+1

et

)
. (24)

Replacing the forward rate êt,t+1 from (23) into (24) and using (22), we can obtain

CIP =
E [Λt+1 (χm∗ − χm)]

E
(

Λt+1

(
1 + π∗t+1

)−1
) . (25)

That is, according to our model, the CIP deviation is given by the nominal risk-adjusted dol-
lar liquidity premium. Accordingly, in the quantitative analysis, we will use the empirical
time series of the CIP deviation to discipline the calibration of the model.

In addition, using (22) and (25), we obtain that the deviation from uncovered interest
parity, UIP , is given by the deviation from CIP plus the safety premium:

UIP = CIP
E
(

Λt+1

1+π∗t+1

)
E [Λt+1]

+
COV

(
Λt+1, R

m,∗
t+1 −Rm

t+1

)
E [Λt+1]

.

That is, banks are willing to hold reserves at a lower return, either because they are a good
hedge or because they provide a superior liquidity value.

Empirically, deviations from UIP and CIP are well documented (see in particular
Kalemli-Özcan and Varela, 2021 and Du et al., 2018). Here, the wedge between the CIP
and UIP deviations is due to the safety premium, but, in practice, there can be other forces,
including borrowing constraints and regulatory constraints.19

An alternative, perhaps more common, measurement of CIP deviation is conducted
18Notice that since there are no aggregate shocks in the balancing stage, it is equivalent to price the forward

in the lending or in the balancing stage.
19In the quantitative analysis that follows, we will consider an exogenous wedge as a stand-in for these

factors, using a risk-neutral version of the model. An alternative that we leave for future research is to take
an explicit stochastic discount factor.
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using the interbank market rate (LIBOR), rather than the rate on government bonds. An
interesting prediction of our model is that the two deviations from CIP are tightly linked.20

Finally, we highlight an interesting observation made by Du et al. (2018) regarding
the cross-section implications of the CIP deviation. Since the global financial crisis, low-
interest-rate currencies have experienced a high risk-free excess return relative to that
of the high-interest-rate currencies, a pattern that contrasts sharply with the carry-trade
phenomenon. As we showed earlier, a decrease in the nominal interest rate increases the
DLP and thus raises the deviation from CIP. Our model is thus qualitatively consistent
with this empirical pattern.21

Real exchange rate. We have considered a model with a single tradable good and assumed
that the law of one price holds. An implication is that the real exchange rate is constant and
the exchange rate moves one-to-one with the domestic price level for a given price in foreign
currency. However, it is straightforward to allow for non-tradable goods or deviations from
the law of one price to incorporate fluctuations in the real exchange rate. Extending the
model in this direction would allow us, for example, to speak to the positive co-movement
between the nominal exchange rate and the real exchange rate. This extension can be used
to confront the Mussa facts (see e.g., Itskhoki and Mukhin, 2021b).22

5 Quantitative Analysis

We now explore a quantitative version of the model. We use the euro-dollar exchange
rate, liquidity ratios, policy variables and observed premia to calibrate the model and
estimate the shocks. We then study the importance of the dollar funding risk to account
for movements in the exchange rate. We replace the {∗} notation with i ∈ {us, eu} to avoid
confusion as we also introduce other currencies into the analysis below.

20In particular, we can show that under risk neutrality, the difference between the interbank market-based
CIP and the government bond-based CIP depends on the endogenous liquidity objects and is given by
χ+
t /Ψ

+
t − χ+,∗

t /Ψ+,∗
t .

21An alternative explanation provided by Amador et al. (2020) highlights central bank policies of resisting
an appreciation at the zero lower bound. In their framework, deviations from CIP arise when a central bank
purchases foreign reserves and the bank’s financial constraint prevents an arbitrage between domestic and
foreign assets.

22In Itskhoki and Mukhin (2021b), when noisy traders demand more Euro bonds, this appreciates the
Euro and also lead to higher consumption in Europe, leading to a real exchange rate appreciation through
consumption smoothing effects. Funding risk in our model is a natural candidate to drive the co-movement
between nominal and real exchange rates, once the model is extended with multiple goods.
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5.1 Additional Features

Before we proceed to the description of the calibration and estimation, we modify the
model to incorporate additional features that help it quantitatively account for the data.
Limited equity. In the baseline model, banks have unlimited access to equity financing.
This is because banks have linear utility and face no lower bound on dividend payments.
This assumption ensures that the return on loans is fixed at 1/β, the return on bank equity.
This simplifies the analytical characterization above. However, the assumption is unrealistic
because all the movements in the bond premium, BP , follow from changes in the real
expected return to dollar reserves, but not on the loan rate. To enrich the quantitative model
and deliver endogenous variations in the loan rate, we assume that banks face limited
equity financing. Specifically, we assume that banks do not accumulate equity: they pay
out their realized previous-period profits as dividends (or raise equity to finance their
losses). Since average profits must equal zero in equilibrium, this implies that averaging
across banks, reserves and loans must be financed with deposits:

b̃t + m̃us
t + m̃eu

t = d̃ust + d̃eut . (26)

Based on this equity funding friction, the loan rate is no longer fixed. Aside from this
feature, the bank problem is the same.
Open-market operations. Since unconventional open-market operations have been preva-
lent since the 2008 crisis, we assume that all deviations in the money supply away from the
steady state are due to increases in the stock of securities. Thus we have that Mus

t −Mus
ss =

Sg,ust , where Sust is the security holdings of the Federal Reserve, as described in Section 4.3.
We use analogous equations for the euro.
CIP-UIP wedge. In the data, the deviation from UIP exceeds by some margin the deviations
from CIP (see, e.g., Kalemli-Özcan and Varela 2021). In our baseline model with risk
neutrality, UIP and CIP coincide. We also showed in Section 4.4 that the model can be
extended to allow for risk premia to account for that wedge. In what follows, we leave
open an explicit interpretation and use a simple “risk-premium wedge,” denoted by ξt, to
express the difference between the UIP and CIP deviations, UIP t = CIP t + ξt.

5.2 Calibration and Estimation

We calibrate externally and internally a subset of parameters and estimate the autocorrela-
tion and variances of different shocks to the model. For the distributions of the payment
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shocks, Φ, we adopt a parametric form: We assume the Φ in each country is a two-sided
exponential distribution indexed by a σ volatility parameter.23 Each possible distribution is
indexed by a single dispersion parameter, σ, and the distribution is centered at zero.
Shock processes. We deduce shocks to the payment volatility, funding and the risk-
premium wedge. In particular, at each date, there are distributions of payment shocks
to dollar and euros, σit for i ∈ {us, eu}, the scale of deposits Θd,i

t for i ∈ {us, eu}, and the
wedge in the UIP condition, ξt. In addition, we assume that there are shocks to the interest
on reserves, im,it , and to the money supply, M i

t , which follow a log AR(1) process in (21)
for X ∈ {ξt, σi,Θd,i, im,i,M i

t

}
i∈{us,eu} . Overall, we have 9 shocks and 18 parameters.

From the model’s perspective, {im,it ,M i
t

}
i∈{us,eu} are policy variables that have observ-

able counterparts, so their processes can be directly estimated using (21). By contrast,{
ξt, σ

us
t ,Θ

d,us
t , σeut ,Θ

d,eu
t

}
are unobservables that we deduce these using the Kalman fil-

ter and whose persistence and variance parameters we estimate. Thus, we have a to-
tal of four observable policy variables, {im,it ,M i

t

}
i∈{us,eu}, and five unobservable shocks,{

ξt, σ
us
t ,Θ

d,us
t , σeut ,Θ

d,eu
t

}
.

Data counterparts. We use monthly data from 2001m1 to 2016m12. The data series em-
ployed as counterparts are presented in Figure 8. We use the three-month US and German
government bond rate as the data counterparts for im,ust and im,eut —see panels (c) and (d).
In the model, the exchange rate is stationary, whereas the data feature a slight inflation
differential. Since the model is stationary, we divide each bond rate by the average annual
inflation in the corresponding area of the sample, in order to construct an im,it net of inflation.
For the counterpart of money supplyMus

t , we use the one we used in Section 2. For the data
counterpart of M eu

t we use the sum of holdings of Euro Area Government Issued securities
and Cash held by Monetary Financial Institutions (MFI). With this data {im,it ,M i

t

}
i∈{us,eu},

we estimate im,iss , ρ
im,i , and Σim,ifor i ∈ {us, eu} . The estimates are found in Table B1.

To obtain the filtered time series for the unobservables
{
ξt, σ

us
t ,Θ

d,us
t , σeut ,Θ

d,eu
t

}
, we use

data counterparts for {CIP ,BP∗, µ, µ∗, e} which are equilibrium objects in the model. For
the data counterpart of CIP , we use the mid-point quotes for spot and forward exchange
rates from Bloomberg and the nominal rates on the rates on reserves as data counterparts
of the terms in equation (19). For the reference period, we obtain a value of 12 basis
points, in line with Du et al. (2018). For the data counterpart of BP∗, we use a measure
of liquidity proposed by Stock and Watson (1989) and Friedman and Kuttner (1993), the

23This distribution is convenient because it allows for a continuum of shocks but renders closed form
solutions for the conditional expectations below a threshold, allowing us to compute the reserve deficit
probability analytically, which is useful in computations.
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commercial paper spread, the difference between the three-month spread between the
AAA commercial paper and the three-month Treasury bill, our analogue for the policy
rate.

The data counterpart of µ∗ is the series used in Section 2. We construct an analogous
series for the euro area, µ by dividingM eu by all deposits redeemable at notice and deposits
with agreed maturity held by (MFI). As we noted in Figure 1, the liquidity ratio for the
US may be greater than one, because we us the liquid assets holdings of a broader class of
institutions, but only the deposit stock of the banking system. For the regressions, this does
not matter, since we conduct the regression in changes. Here, we scale the liquidity ratio
so that the steady-state targets for µus and µeu are about 0.2, a figure consistent with the
data targets in Bianchi and Bigio (2021) which are, in turn, taken from bank call reports.
The scaled liquidity ratios are plotted in panel (b) in Figure 8 in the Appendix.
External calibration. We set the matching efficiency parameters of the matching process,
the penalty rate iw, and the bargaining powers, embedded in (5), to the values from
Bianchi and Bigio (2021).24 We do the same for the values for the semi-elasticities of the
loan demand and deposit supply schedules, treating the euro area and the US funding
supplies as symmetric. It is worth noting that penalty rate iw is does not correspond to
the discount window rate set by central banks. Rather, we interpret this penalty more
broadly as capturing stigma or the cost of collateral. Following the estimation in Bianchi
and Bigio (2021), we set this value to 10% annually. The loan demand scale Θb is set to one
as a normalization. The parameters values are listed in Table B1.
Internal calibration. We next describe the parameterization of the steady-state values
of the shock processes {σusss , σeuss , ξss,Θd,us

ss ,Θd,eu
ss

}, which are set to match data targets. We
assume symmetry in the funding scales at steady state, Θd,us

ss = Θd,eu
ss . We are thus left

with four parameters to match four moments. Without loss of generality, we assume an
economy with zero steady state inflation and adjust all nominal rates to deliver the real
rates observed in the data. That is, we set {R̄m,us

ss , R̄m,eu
ss

}={1 + im,usss , 1 + im,euss }. The values
of M eu

ss and Mus
ss can be normalized. For simplicity, we set M eu

ss to obtain a price in euros
equal to one and Mus

ss to generate exchange rate level of the data using (16). In this step,
we calibrate the steady-state values to the time-series averages between the years 2002 and
2005, rather than estimating these parameters, because the 2002:2005 period was relatively
stable.

We adopt a sequential procedure to calibrate the steady state parameters. First, we solve
24See Appendix D for the mapping between the efficiency parameter λ and bargaining powers η to the

probabilities of matching and the interbank market rate.
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for σusss from BP∗ss = E [χm (µusss , σ
us
ss )]. Second, we use the steady-state version of equation

(24) to compute the CIP deviation and obtain σeuss . That is, CIPss = E [χm (µeuss , σ
eu)] −

E [χm (µusss , σ
us
ss )].25 Third, the average risk-premium, ξss, is obtained from UIPss = CIPss +

ξss, where we use UIPss = Rm
ss −Rm,∗

ss as a data analogue.26 Finally, we obtain Θd,us
ss from

the bank’s budget constraint and the target for the liquidity ratio.27

Filtering. Once we set the steady-state parameter values, we use a Kalman filter on the
linearized version of the model to filter the unobserved shocks and estimate their persistence
and variance using Bayesian maximum likelihood. As we showed in Proposition 3, these
parameters govern the regression coefficients in Section 2—hence we tie our hands in terms
of the ability to match those regressions.

It is instructive to discuss which data series are informative about which inferred series
in the filtering step. First, as in the steady state calibration, the bond premium is informative
about the payments volatility σust , given that BP∗t = E [χm (µust , σ

us)] . Likewise, the CIP
deviation is informative about σeut , since CIP t = E [χm (µeut , σ

eu
t )]−BP t. Within a transition,

the values of {ρx} and the internal structure lead to a forecast of the expected future
exchange rate, E

[
et+1|ξt, σust ,Θd,us

t , σeut ,Θ
d,eu
t

]
. Thus, given the policy rates, the observed

exchange rate is informative about the risk premium, ξt, given observed UIP and CIP
deviations. Finally, the liquidity ratios are informative about

{
Θd,us
t ,Θd,eu

t

}
in line with

the results from Proposition 1. Given the set of observables and deduced shocks, the
budget constraint and the deposit demand schedules leaves two unknowns,

{
Θd,us
t ,Θd,eu

t

}
,

to match the corresponding liquidity ratios. The priors and posteriors are reported in Table
B.

5.3 Quantitative Results

Model validation. After the estimation, we conduct Monte Carlo simulations (1,000,000)
to generate unconditional moments and compare these with their data counterparts. By
construction, the model reproduces the target moments. In terms of untargeted moments,
Table B3 also shows that the model also delivers a data-consistent persistence and standard
deviation of the exchange rate.

25Note that to reconcile an average BPss > CIPss, the calibration calls for more volatile payments in
dollars: σusss is almost four times the σeuss in steady state. This is consistent with our notion that the volatility
of dollar flows is larger because of the more ample use in the short-term funding market.

26Kalemli-Özcan and Varela (2021) provide a comprehensive comparative analysis of the different ways to
measure UIP.

27We can obtain b = Θb(Rm,usss + BPss)−ε
b from loan market clearing. Similarly, we obtain dusss and deuss

from their corresponding clearing conditions. Setting Θd,us
ss = Θd,eu

ss , and substituting {bss, dusss , deuss , µusss , µeuss}
into the bank’s budget constraint, (26), we obtain a single equation for Θd,us

ss .

41



An important validation test is the ability to replicate the regression analysis of Section
2. To do so, we extend the model to allow for multiple currencies by assuming that the
funding scale of all currencies except for the euro and the dollar have measure zero in the
banks’ portfolio. We then pin down the liquidity ratio, the exchange rate and the returns
of all currencies. For the simulations, we assume that the shocks to all currencies other
than the dollar are the same as for the euro, with the exception of the countries’ nominal
policy rates which we feed directly from the data.

With our baseline parameterization, we split the simulated series into subsamples of 234
periods—corresponding to the data sample. We report the average and standard deviation
of the regression coefficients from each subsample. The takeaway from Table 9 is that the
simulation-based regression delivers a positive and similar-to-the-data coefficients for the
effect of the liquidity ratio on the exchange rat. The exception is the Japanese yen, which
displays a negative coefficient in the empirical analysis.28 As discussed in Proposition 3,
the persistence and variance parameters of the shocks govern the regression coefficient
on the liquidity ratio. Hence, the success in matching the regressions coefficients suggests
that funding risk may key factor driving banks’ balance sheets. To substantiate the point,
we perform a historical decomposition.29

Shock estimates. The shocks that we infer from the filtering exercise are presented in Figure
4. From panel (a), we observe that the dollar funding risk σust is close to steady state before
2007 but increases sharply during the financial crisis and remains higher past that period.
As Figure 8 shows, the US bond premium BP∗ spikes during the financial crisis, while
the US liquidity ratio µust remains consistently high after the financial crisis. To reconcile
a higher liquidity ratio with a BP∗ that returns close to steady state, the model needs a
persistently high dollar funding risk, σust . Our interpretation is that the spikes σust that we
observe in from 2007-2009, likely reflect a dysfunctional dollar interbank market. However,
the persistent rise of σust after the crisis can be attributed to several factors, including the

28Note that the sign on the inflation variable in this table is opposite to the one estimated in the data. That
arises because we have modeled monetary policy as a money-growth rule, but in the data, central banks
have followed an inflation-targeting rule. Under standard stationarity conditions, an increase in inflation
under an inflation-targeting rule leads to a currency appreciation, while under a money growth rule inflation
is associated with depreciation. It is not the aim of this paper to model how monetary policy affects the
exchange rate, and our results regarding the relationship of liquidity shocks to exchange rates are not affected
by the model of the monetary policy rule.

29As mentioned in the empirical analysis, the liquidity ratio is non-significant for Japan and in some cases
for Switzerland. In Appendix C.3 we present a robustness exercise, where we allow for demand shifters
of the Yen and Swiss Franc funding correlated with funding risk that is able to replicate the more tenuous
statistical relationship.
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Table 9: Regression Coefficients with Simulated Data for Multiple Currencies

Euro AU CAN JPN NZ NWY SWE CH UK
∆(LiqRatiot) 0.135 0.172 0.179 0.179 0.174 0.165 0.172 0.178 0.175

(0.065) (0.113) (0.058) (0.059) (0.083) (0.062) (0.074) (0.059) (0.067)
∆(πit − πust ) 0.207 0.238 0.196 0.196 0.226 0.201 0.217 0.196 0.211

(0.121) (0.193) (0.109) (0.111) (0.146) (0.112) (0.135) (0.111) (0.125)
LiqRatio(−1) 0.007 0.010 0.008 0.008 0.009 0.008 0.008 0.008 0.008

(0.023) (0.036) (0.021) (0.021) (0.028) (0.022) (0.026) (0.021) (0.024)
Constant 0.010 0.015 0.012 0.012 0.013 0.012 0.013 0.012 0.012

(0.035) (0.054) (0.032) (0.032) (0.043) (0.034) (0.039) (0.032) (0.037)
N 234 234 234 234 234 234 234 234 234
adj. R2 0.046 0.029 0.067 0.066 0.043 0.058 0.049 0.067 0.056

increase in counterparty risk and stricter liquidity regulation, which included the liquidity
coverage ratio and the net stable funding ratio (Copeland et al., 2021).

Panel (b) presents the euro funding risk σeut . As the figure shows, it is substantially
lower and more stable compared with the dollar funding risk. There are a couple of dips
and reversals around 2008 and the 2012 European debt crisis, which the estimation infers
from fluctuations in the CIP deviations. Panels (c) and (d) show the path of the scale of
dollar and euro funding. The two variables exhibit relatively lower frequency movements.
For the dollar, we see a secular decline up to 2008 and a subsequent increase. For euros,
we see an increase up to the 2012 crisis and then a decrease. The risk premium wedge
presented in panel (e) shows a sizable negative value early 2000, which could be attributed
to the difficulties in forecasting the exchange rate after during the period of early inception
of the euro. This negative value captures that the euro was stronger than predicted from
(19). After that initial transition, we see that the wedge fluctuates around zero with some
spikes around 2008 and 2012.
How important are liquidity factors? We now investigate the extent to which liquidity
factors, the inherent factors of our theory, play a role in driving exchange rate fluctuations
and liquidity premia. We pay special attention to the funding risk shock, which the theory
predicts to be the main driver of the regression patterns. We first present a variance
decomposition of the linearized version of the model. We group the shocks to the funding
scale, Θx

t , the funding risk, σxt , and the supply of reserve assets,Mx
t , for x ∈ {us, eu} into the

liquidity group. Shocks to the policy rates in both countries and the risk-premium wedge
form corresponding groups. The results are presented in the first row of Figure 5: Each
panel in the top reports the percent contribution of groups of shocks to a variable of interest.
The contribution of liquidity factors accounts for 27% of the variance of the euro-dollar
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Figure 4: Estimated Shocks using the Kalman filter

exchange rate (panel a), 99% of the variance of the dollar bond premium (panel b) and 95%
of the variance of the CIP deviation (panel c). When we further decompose variance of the
exchange rate by the contribution of the constituents of the liquidity factors, following the
classification outlined above, funding risk turns out to be the main factor. Alone, funding
risk drives 50% of the contribution of liquidity factors to the variance euro-dollar exchange
rate, 88% of the variance of the dollar bond premium, and 84% of the contribution to the
variance of the CIP deviation.
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Figure 5: Variance Decomposition of Shocks
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Figure 6: Shock Decomposition
Note: The figure reports the contribution of different groups of shocks in explaining the exchange rate.

Historical Decomposition and Counterfactuals. Next, we perform a decomposition of the
recent evolution of the euro-dollar exchange rate. Figure 6 presents the results. The solid
series is the percentage deviation of the euro-dollar exchange rate from the steady state. The
vertical bars are the contribution of each group of shocks: we unpack the contribution of the
liquidity factor into its components (liquidity risk, liquidity scale and reserve supply)and
present these together with the contribution of policy rate shocks (policy) and the risk
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premium wedge. To compute the contribution of each shock, we turn off the shock in each
period by setting the value equal to the steady state and keeping the rest of the shocks on.
A key takeaway from Figure 6 is that since the 2008 financial crisis, funding risk has played
a prominent role in accounting for a stronger dollar, an effect that has partially been offset
by the large increase in the supply of reserve assets.To zoom in on the the role of funding
risk during the period, in Figure 7, we present the time series of the exchange rate together
with two measures of CIP deviations (in terms of interbank and bond-market rates). We
present the data, the model, and the counterfactual without the US funding risk shock
(panels a, b, and c respectively). Consistent with the analysis, the counterfactual shows a
much lower deviation from CIP (using both interest rates on reserves and interbank market
rates, as explained in Section 4.4) and a more depreciated dollar. Of course, the period post
2008 has also been a period of ample reserves which offsets the effect of a greater funding
risk.
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Figure 7: Counterfactual without σus

Note: The figure reports the predicted series of the model with all shocks and a counterfactual without σust .

These findings speak to a burgeoning literature on convenience yield on government
bonds and the implications for foreign exchange markets. To see this more clearly, Panel
(d) shows the counterfactual value for the BP∗ series, our measure of the convenience
yields. Without the shock, convenience yields would have been compressed considering the
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expansion in reserves that occurred during the period. Panel’s (e) and (f) show untargetted
series that are again, consistent with the pattern. Panel (e) shows the Ted spread deviation,
the difference between the interbank rate (the data counterpart is the effective Federal
Funds rate in ) and the policy rate. We can observe how the model and the data show a
consistent pattern of large deviations from mean during the crisis, with a normalization
period starting in 2010, although clearly, the scale of the deviations in the data are much
larger than in our model. Panel (f) shows the funding spread: the difference between the
deposit rate (the data counterpart is the 4-week certificate deposit) and the policy rate.
While not a target, the fit to this series is also very good. The counterfactual shows that
offered savings rates would have been lower without the liquidity risk shock post crisis.

All in all, liquidity factors seem to be as important as changes in compensations for risk
and changes in policy rates, which the literature has focused on. Importantly, liquidity is
affected by monetary policy. In terms of the convenience yields, a recent empirical literature
that has demonstrated a remarkable explanatory and predictive power of convenience
yields for exchange rate fluctuations (Jiang et al. 2021; Engel and Wu (2018)). An active
theoretical literature has incorporated exogenous convenience yields in international macro
models (Kekre and Lenel, 2021; Jiang et al., 2020; Schmitt-Grohé and Uribe, 2021). Our
model can be interpreted as a microfoundation for a liquidity yield. The quantitative
findings suggest that the liquidity-risk microfoundation that we offer is able to explain
most of the observed variations in convenience yields, and therefore exchange rates. As
stated above, we interpret the results as suggesting a severe liquidity scarcity during the
crisis and a persistent increase in regulation-driven liquidity demand during its aftermath.
Instrumental Variables in the model. As we explained, a key challenge in the empirical
analysis is that the relationship between the liquidity ratio and exchange rates depends on
time-varying liquidity demand and supply factors. Figure 11 in the appendix presents the
data for the spreads in the Federal Funds, one of the instruments employed in Section 2 and
plots it against χ−, a measure of the interbank stress in the model. While not a target, the
co-movement is remarkable. The takeaway is that the model showcases that a measure of
interbank stress was heightened in moments where liquidity demand factors are important:
as can be seen from panel (a) in Figure 4. Looking at the filtered series for σust in contrast
to χ−, indicates that the supply of reserves was critical at mitigating spreads and an even
stronger appreciation of the dollar.
The March 2020 “Dash for Cash.” We argued that the model needs a persistently high
dollar funding risk after 2008, to explain the strength of the dollar given the large increase
in the dollar liquidity ratio. We now turn to some anecdotal evidence. A revealing case
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study of liquidity demand for dollars is the sudden turmoil in markets at the onset of the
COVID crisis in March 2020, often referred to as the “dash for cash.” As governments began
to institute lockdowns in late February and the severity of the COVID crisis began to come
into focus in early March, there was naturally a “flight to safety” as investors fled from
equities and other risky assets into safer government-backed securities.

However, the nature of the financial stress quickly changed character, as agents turned
even from assets normally considered to be safe, such as longer-term US Treasury bonds,
to cash and other very liquid assets, such as Treasury bills. Even though the Fed cut rates
on March 3, medium- and long-term Treasury rates began to rise on March 13th, as shown
in Table C1. Yields on all bonds with maturities of five years or longer rose substantially
through March 18th.

At the same time, interest rates on the shorter end of the spectrum, such as those for
highly liquid Treasury bills, fell during this time period. Table C1 clearly shows this drop
for maturities less than one year.

Very late on March 18th, the Federal Reserve announced a plan for dealing with the
problem. It offered to buy illiquid bonds held by money market funds. This action slowed
the dash toward cash, but the markets were not calmed until early in the morning of March
23rd, when the Fed announced a plan to buy large amounts of Treasury bonds and agency
securities. After that move, the flight toward liquidity slowed, and the increase in long
term bond rates ceased.

Consistent with the theory, Figure 10 shows the behavior of the dollar/euro exchange
rate during this period. The dollar sharply appreciated between March 9th and March
19th, during the strongest surge of liquidity demand. The dollar subsequently began to
depreciate after the Fed announced its moves to ease the liquidity shortage. Cesa-Bianchi
and Eguren-Martin (2021) undertakes a detailed analysis of this episode that is completely
consistent with this description. They find that the “dash for cash” was mostly a “dash
for dollars” rather than liquid government bonds denominated in other currencies, which
they attribute to the global demand for lqiuid dollar assets.

6 Conclusions

We develop a theory of exchange rate determination emerging from financial institutions’
demand for liquid dollar assets. Periods of increased funding volatility generate a “scram-
bling for dollars” effect that raises liquidity premia and appreciates the dollar. In line with
the theory, we document that a higher liquidity ratio in the financial system is associated
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with a stronger dollar. We also use the model as a quantitative laboratory to decompose
the different forces driving exchange rate fluctuations. We conclude from our analysis that
funding risk is a key factor driving fluctuations in exchange rates.

Our framework can be extended in several directions. For example, it would be interest-
ing to allow for a richer production structure and nominal rigidities to analyze conventional
channels of monetary policy. In addition, our model is also a suitable laboratory to study
foreign exchange interventions, swap lines, and other less conventional policies. We leave
this for future research.
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Table A1: Exchange Rates and Alternative Measure of Liquidity Ratio
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRat2t) 0.099*** 0.117*** 0.069*** -0.012 0.125*** 0.101*** 0.088*** 0.079*** 0.103***
(3.774) (3.298) (2.65) (-0.451) (3.416) (3.081) (2.791) (2.765) (4.026)

πt − π∗t -0.836*** -0.612*** -0.393* -0.082 -0.667*** -0.125 -0.441** -0.635*** -0.334**
(-3.661) (-2.635) (-1.823) (-0.541) (-2.939) (-0.839) (-2.261) (-2.716) (-1.998)

LiqRat2t−1 0.004 0.003 0.005* 0.004 0.002 0.006* 0.004 0.003 0.003
(1.357) (0.989) (1.724) (1.220) (0.476) (1.720) (1.355) (1.105) (1.207)

Constant -0.005*** 0.000 -0.002 -0.002 -0.002 -0.001 -0.005* -0.014*** -0.001
(-2.625) (0.079) (-1.270) (-0.661) (-1.005) (-0.573) (-1.794) (-3.172) (-0.352)

N 235 235 235 235 235 235 235 235 235
adj. R2 0.09 0.05 0.03 -0.00 0.06 0.04 0.04 0.04 0.06
t statistics in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A2: Exchange Rates and Alternative Measure of Liquidity Ratio with VIX
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRat2t) 0.090*** 0.092*** 0.058** -0.007 0.106*** 0.088*** 0.078*** 0.074*** 0.0965***
(3.538) (3.064) (2.503) (-0.278) (3.194) (2.874) (2.612) (2.606) (3.800)

πt − π∗t -0.649*** -0.332* -0.269 -0.112 -0.452** -0.051 -0.380** -0.568** -0.261
(-2.881) (-1.164) (-1.389) (-0.743) (-2.181) (-0.364) (-2.062) (-2.428) (-1.583)

∆VIXt 0.145*** 0.382*** 0.240*** -0.092** 0.324*** 0.246*** 0.218*** 0.081** 0.109***
(4.179) (9.527) (7.674) (-2.586) (7.281) (6.071) (5.443) (2.157) (3.300)

LiqRat2t−1 0.004 0.005 0.005** 0.004 0.003 0.006* 0.005 0.003 0.003
(1.613) (1.539) (1.998) (1.265) (0.911) (1.856) (1.631) (1.194) (1.187)

Constant -0.004** -0.001 -0.002 -0.003 -0.003 -0.001 -0.004* -0.013*** -0.001
(-2.347) (-0.464) (-1.258) (-0.830) (-1.183) (-0.592) (-1.736) (-2.923) (-0.322)

N 235 235 235 235 235 235 235 235 235
adj. R2 0.15 0.32 0.23 0.02 0.23 0.16 0.15 0.06 0.10
t statistics in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A3: Exchange Rates and Alternative Measure of Liquidity Ratio (M2-Currency)
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRat3t) 0.084 0.114 0.099 -0.243*** 0.214** 0.086 0.074 0.016 0.134**
(1.285) (1.318) (1.574) (-3.899) (2.333) (1.061) (0.949) (0.232) (2.116)

πt − π∗t -0.607*** -0.520** -0.363* -0.023 -0.699*** -0.067 -0.360* -0.417* -0.217
(-2.901) (-2.315) (-1.792) (-0.180) (-3.007) (-0.467) (-1.933) (-1.938) (-1.385)

LiqRat3t−1 0.006 0.005 0.008 0.006 0.003 0.010 0.006 0.004 0.005
(1.170) (0.789) (1.503) (1.131) (0.424) (1.565) (1.080) (0.803) (0.930)

Constant 0.003 0.006 0.007 0.008 0.001 0.012 0.004 -0.005 0.005
(0.474) (0.777) (1.157) (1.285) (0.111) (1.482) (0.553) (-0.573) (0.829)

N 246 246 246 246 246 246 246 246 246
adj. R2 0.03 0.02 0.01 0.06 0.03 0.00 0.01 0.01 0.01
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table A4: Exchange Rates and Alternative Measure of Liquidity Ratio (M2-Currency) with VIX
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRat3t) 0.085 0.117 0.108* -0.247*** 0.209** 0.095 0.083 0.018 0.135**
(1.352) (1.580) (1.906) (-4.018) (2.519) (1.262) (1.120) (0.251) (2.192)

πt − π∗t -0.473** -0.287 -0.258 -0.037 -0.507** -0.015 -0.320* -0.374* -0.172
(-2.320) (-1.484) (-1.415) (-0.299) (-2.390) (-0.115) (-1.816) (-1.744) (-1.125)

∆VIXt 0.147*** 0.365*** 0.229*** -0.091*** 0.309*** 0.253*** 0.208*** 0.078** 0.115***
(4.471) (9.539) (7.795) (-2.863) (7.344) (6.511) (5.441) (2.177) (3.677)

LiqRat3t−1 0.007 0.008 0.009* 0.006 0.006 0.011* 0.008 0.005 0.005
(1.501) (1.429) (1.884) (1.088) (0.890) (1.858) (1.402) (0.930) (1.020)

cons 0.005 0.009 0.009 0.007 0.004 0.014* 0.006 -0.003 0.006
(0.863) (1.294) (1.544) (1.187) (0.537) (1.770) (0.878) (-0.380) (0.926)

N 246 246 246 246 246 246 246 246 246
adj. R2 0.10 0.28 0.21 0.08 0.21 0.15 0.11 0.02 0.06
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table A5: Relationship of Exchange Rates and Liquidity Ratio Feb. 2001 – April 2012
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRatt) 0.240*** 0.310*** 0.143** -0.144** 0.338*** 0.203*** 0.217*** 0.198*** 0.152**
(3.781) (3.816) (2.380) (-2.371) (4.106) (2.664) (2.807) (2.771) (2.587)

πt − π∗t -1.095*** -0.725** -0.601** -0.261 -0.615** -0.199 -0.522** -0.713** -0.225
(-3.565) (-2.540) (-2.372) (-1.133) (-2.255) (-1.093) (-2.125) (-2.454) (-1.041)

LiqRatt−1 0.008 -0.009 -0.001 -0.002 -0.003 0.001 -0.002 -0.003 0.003
(1.181) (-1.054) (-0.077) (-0.300) (-0.309) (0.102) (-0.282) (-0.381) (0.360)

Constant -0.011*** -0.001 -0.006 -0.008 -0.005 -0.006 -0.008 -0.017*** -0.004
(-2.811) (-0.109) (-1.633) (-1.007) (-1.009) (-1.399) (-1.565) (-2.636) (-0.890)

N 135 135 135 135 135 135 135 135 135
adj. R2 0.13 0.11 0.05 0.04 0.12 0.03 0.05 0.06 0.03
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01



Table A6: Exchange Rates and Liquidity Ratio with VIX Feb. 2001 – April 2012
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRatt) 0.182*** 0.176** 0.061 -0.114* 0.248*** 0.134* 0.136* 0.169** 0.137**
(2.856) (2.467) (1.102) (-1.831) (3.127) (1.767) (1.827) (2.286) (2.250)

πt − π∗t -0.846*** -0.391 -0.362 -0.342 -0.443* -0.109 -0.423* -0.632** -0.193
(-2.765) (-1.586) (-1.563) (-1.464) (-1.724) (-0.614) (-1.831) (-2.146) (-0.879)

∆VIXt 0.175*** 0.430*** 0.266*** -0.089* 0.301*** 0.212*** 0.267*** 0.087 0.044
(3.284) (7.211) (5.700) (-1.730) (4.551) (3.493) (4.409) (1.453) (0.896)

LiqRatt−1 0.009 -0.004 0.001 -0.003 -0.000 0.003 0.001 -0.002 0.003
(1.422) (-0.541) (0.243) (-0.406) (-0.047) (0.415) (0.149) (-0.216) (0.348)

Constant -0.010*** -0.003 -0.005 -0.010 -0.005 -0.006 -0.008 -0.016** -0.003
(-2.694) (-0.679) (-1.554) (-1.283) (-1.191) (-1.395) (-1.608) (-2.444) (-0.827)

N 135 135 135 135 135 135 135 135 135
adj. R2 0.19 0.36 0.24 0.06 0.23 0.11 0.17 0.06 0.03
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table A7: Exchange Rates and Liquidity Ratio Instrumental Variable Regression:
StDev(Inf), StDev(XRate), lagged FFundsSpread and lagged Δ(LiqRat) instrument for ∆(LiqRat) Feb. 2001 – April 2012

Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.
∆(LiqRatt) 0.324** 0.579*** 0.418*** -0.109 0.475*** 0.495** 0.397** 0.142 0.498***

(2.183) (3.209) (2.977) (-0.736) (2.647) (2.442) (2.169) (0.803) (2.889)
πt − π∗t -1.019*** -0.767** -0.662** -0.343 -0.586** -0.391 -0.634** -0.591* -0.643**

(-2.887) (-2.472) (-2.314) (-1.254) (-2.064) (-1.622) (-2.269) (-1.677) (-2.019)
LiqRatt−1 0.010 -0.002 0.004 -0.002 0.002 0.006 0.002 -0.001 0.013

(1.497) (-0.190) (0.613) (-0.355) (0.188) (0.664) (0.306) (-0.170) (1.329)
∆VIXt 0.142** 0.331*** 0.186*** -0.092 0.250*** 0.133* 0.212*** 0.091 -0.036

(2.246) (4.333) (3.068) (-1.526) (3.257) (1.715) (2.945) (1.298) (-0.557)
Constant -0.012*** -0.006 -0.011** -0.010 -0.008 -0.012** -0.012** -0.015* -0.011**

(-2.816) (-1.246) (-2.438) (-1.078) (-1.596) (-2.106) (-2.136) (-1.889) (-1.983)
N 134 134 134 134 134 134 134 134 134
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table A8: Relationship of Exchange Rates and Liquidity Ratio May 2012 – July 2021
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRatt) 0.208*** 0.172* 0.126 -0.051 0.181* 0.218** 0.252*** 0.043 0.184**
(2.927) (1.735) (1.657) (-0.624) (1.663) (2.077) (2.894) (0.583) (2.290)

πt − π∗t -0.451 -0.399 0.181 0.074 -0.798 -0.169 -0.273 -0.408 -0.660*
(-1.551) (-0.847) (0.445) (0.320) (-1.365) (-0.623) (-0.940) (-1.132) (-1.802)

LiqRatt−1 0.017 0.019 0.012 0.002 0.004 0.015 0.006 0.019 0.033
(0.976) (0.670) (0.614) (0.061) (0.187) (0.607) (0.328) (1.031) (1.507)

Constant -0.016 -0.013 -0.008 0.002 -0.004 -0.008 -0.004 -0.024 -0.027
(-0.973) (-0.498) (-0.439) (0.079) (-0.190) (-0.357) (-0.248) (-1.165) (-1.386)

N 111 111 111 111 111 111 111 111 111
adj. R2 0.06 0.00 0.01 -0.02 0.01 0.02 0.06 -0.01 0.04
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table A9: Exchange Rates and Liquidity Ratio with VIX May 2012 – July 2021
Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.

∆(LiqRatt) 0.206*** 0.159* 0.125* -0.050 0.174* 0.212** 0.251*** 0.043 0.181**
(2.940) (1.807) (1.790) (-0.621) (1.770) (2.247) (2.958) (0.572) (2.389)

πt − π∗t -0.408 -0.090 0.103 0.072 -0.402 -0.057 -0.235 -0.393 -0.607*
(-1.419) (-0.214) (0.274) (0.314) (-0.752) (-0.233) (-0.829) (-1.086) (-1.755)

∆VIXt 0.074** 0.255*** 0.170*** -0.082* 0.265*** 0.257*** 0.116** 0.026 0.152***
(1.992) (5.472) (4.565) (-1.946) (4.996) (5.100) (2.557) (0.653) (3.794)

LiqRatt−1 0.016 0.008 0.015 0.001 0.006 0.012 0.007 0.019 0.032
(0.950) (0.321) (0.836) (0.051) (0.289) (0.541) (0.358) (1.015) (1.548)

Constant -0.015 -0.003 -0.011 0.002 -0.005 -0.006 -0.004 -0.024 -0.026
(-0.933) (-0.148) (-0.649) (0.090) (-0.233) (-0.293) (-0.259) (-1.138) (-1.422)

N 111 111 111 111 111 111 111 111 111
adj. R2 0.09 0.22 0.17 0.00 0.19 0.20 0.10 -0.02 0.15
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table A10: Exchange Rates and Liquidity Ratio Instrumental Variable Regression:
StDev(Inf), StDev(XRate), lagged FFundsSpread, lagged Δ(LiqRat), and ∆(USIndProd) instrument for ∆(LiqRat) May 2012
– July 2021

Euro Australia Canada Japan New Zealand Norway Sweden Switz U.K.
∆(LiqRatt) 0.380* 0.191 0.361 -0.236 0.461 0.687** 0.257 0.030 0.360

(1.745) (0.755) (1.648) (-0.945) (1.498) (2.185) (1.027) (0.139) (1.546)
πt − π∗t -0.489 -0.116 0.046 0.146 -0.495 -0.145 -0.234 -0.385 -0.713*

(-1.574) (-0.251) (0.115) (0.580) (-0.878) (-0.520) (-0.825) (-0.998) (-1.887)
LiqRatt−1 0.016 0.009 0.013 -0.002 0.002 0.009 0.007 0.019 0.033

(0.893) (0.338) (0.684) (-0.081) (0.080) (0.342) (0.346) (1.013) (1.559)
∆VIXt 0.073* 0.255*** 0.169*** -0.082* 0.262*** 0.254*** 0.116** 0.026 0.151***

(1.902) (5.444) (4.328) (-1.884) (4.764) (4.527) (2.556) (0.655) (3.672)
Constant -0.014 -0.004 -0.008 0.005 0.000 0.000 -0.004 -0.024 -0.027

(-0.859) (-0.160) (-0.448) (0.205) (0.021) (0.001) (-0.244) (-1.128) (-1.396)
N 111 111 111 111 111 111 111 111 111
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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B Additional Tables Quantitative Analysis

Figure 8: Data series
(a) Log Euro-Dollar
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Table B1: Calibrated Parameters
Parameter Value Description Target

External Calibration
Mus
ss /M

eu
ss 0.6841 relative money supply normalized to exchange rate levels

Θb 1 global loan demand scale normalization
ε -35 loan demand elasticity Bianchi and Bigio (2021)/symmetry
ςus = ςeu 35 US/EU deposit demand elasticity Bianchi and Bigio (2021)/symmetry
λus = λeu 7.9 US/EU interbank market matching efficiency Bianchi and Bigio (2021)
ιus=ιeu 10 US policy corridor spread Bianchi and Bigio (2021)
ηus = ηeu 1/2 benchmark/symmetry
Steady-State Estimation of Financial Variables
Θd,∗
ss 1.0026 US deposit demand scale To match steady-state moments

Θd
ss 1.0026 EU deposit demand scale symmetry

σusss 76.8541 average US payment shock steady-state moment targets
σeuss 21.9133 average US payment shock steady-state moments targets
ξss -62.5845 average CIP and UIP wedge steady-state moments targets
Estimates of US and EU policy variables
E (im,ust ) 0.9957 annualized US interest on reserves data
Σ (im,ust ) 0.0026 std annual US policy rate data
ρ (im,ust ) 0.9777 autocorrelation annual US policy rate data
E (im,eut ) 1.0027 average annual Euro policy rate data
Σ (im,eut ) 0.0017 std annual Euro policy rate data
ρ (im,eut ) 0.9894 autocorrelation annual Euro policy rate data
E (lnMus

t ) 6.7255 average monthly US liquid assets stock ($ Billion) data
Σ (lnMus

t ) 0.0281 std monthly US liquid assets stock data
ρ (lnMus

t ) 0.9894 autocorrelation monthly US liquid assets stock data
E (lnMus

t ) 6.7255 average monthly US liquid assets stock ($ Billion) data
Σ (lnMus

t ) 0.0281 std monthly US liquid assets stock data
ρ (lnMus

t ) 0.9894 autocorrelation monthly US liquid assets stock data
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Table B2: Estimated Process
Parameter Prior Fam Prior Mean Post. Mean Post. Interval
Σσus Inv. Gamma 0.150 0.100 0.091-0.108
Σσeu Inv. Gamma 0.150 0.124 0.115-0.134
ΣΘus Inv. Gamma 0.030 0.017 0.015-0.018
ΣΘeu Inv. Gamma 0.020 0.015 0.014-0.017
Σξ Inv. Gamma 0.000 0.001 0.000-0.001
ρσ

us Beta 0.930 0.989 0.986-0.991
ρσ

eu Beta 0.930 0.954 0.931-0.973
ρΘus Beta 0.985 0.991 0.989-0.992
ρΘeu Beta 0.980 0.989 0.988-0.991
ρξ Beta 0.980 0.980 0.979-0.982

Table B3: Model and Data Moments

Figure 9: Euro per Dollar Exchange Rate, March 2020
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Table B4: U.S. Treasury Yields, March 2020
Date 1 Mo 2 Mo 3 Mo 6 Mo 1 Yr 2 Yr 3 Yr 5 Yr 7 Yr 10 Yr 20 Yr 30 Yr

3/2/2020 1.41 1.27 1.13 0.95 0.89 0.84 0.85 0.88 1.01 1.1 1.46 1.66
3/3/2020 1.11 1.05 0.95 0.83 0.73 0.71 0.72 0.77 0.91 1.02 1.44 1.64
3/4/2020 1 0.87 0.72 0.68 0.59 0.67 0.68 0.75 0.9 1.02 1.45 1.67
3/5/2020 0.92 0.83 0.62 0.53 0.48 0.59 0.61 0.67 0.81 0.92 1.34 1.56
3/6/2020 0.79 0.64 0.45 0.41 0.39 0.49 0.53 0.58 0.69 0.74 1.09 1.25
3/9/2020 0.57 0.52 0.33 0.27 0.31 0.38 0.4 0.46 0.56 0.54 0.87 0.99
3/10/2020 0.57 0.55 0.44 0.43 0.43 0.5 0.58 0.63 0.73 0.76 1.16 1.28
3/11/2020 0.42 0.42 0.42 0.4 0.4 0.5 0.58 0.66 0.78 0.82 1.13 1.3
3/12/2020 0.41 0.33 0.33 0.37 0.39 0.5 0.58 0.66 0.82 0.88 1.27 1.49
3/13/2020 0.33 0.3 0.28 0.38 0.38 0.49 0.58 0.7 0.89 0.94 1.31 1.56
3/16/2020 0.25 0.25 0.24 0.29 0.29 0.36 0.43 0.49 0.67 0.73 1.1 1.34
3/17/2020 0.12 0.18 0.19 0.24 0.3 0.47 0.54 0.66 0.91 1.02 1.45 1.63
3/18/2020 0.04 0.03 0.02 0.08 0.21 0.54 0.66 0.79 1.08 1.18 1.6 1.77
3/19/2020 0.04 0.04 0.04 0.06 0.2 0.44 0.53 0.66 1 1.12 1.56 1.78
3/20/2020 0.04 0.05 0.05 0.05 0.15 0.37 0.41 0.52 0.82 0.92 1.35 1.55
3/23/2020 0.01 0.04 0.02 0.08 0.17 0.28 0.31 0.38 0.63 0.76 1.12 1.33
3/24/2020 0.01 0.01 0.01 0.09 0.25 0.38 0.44 0.52 0.75 0.84 1.19 1.39
3/25/2020 0 0 0 0.07 0.19 0.34 0.41 0.56 0.77 0.88 1.23 1.45
3/26/2020 0.01 0.01 0 0.04 0.13 0.3 0.36 0.51 0.72 0.83 1.2 1.42
3/27/2020 0.01 0.03 0.03 0.02 0.11 0.25 0.3 0.41 0.6 0.72 1.09 1.29
3/30/2020 0.04 0.07 0.12 0.12 0.14 0.23 0.29 0.39 0.57 0.7 1.1 1.31
3/31/2020 0.05 0.12 0.11 0.15 0.17 0.23 0.29 0.37 0.55 0.7 1.15 1.35

Source: U.S. Department of Treasury
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Figure 10: Euro per Dollar Exchange Rate, March 2020
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C Additional Tables

C.1 Dash for Cash Episode
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Table C1: U.S. Treasury Yields, March 2020
Date 1 Mo 2 Mo 3 Mo 6 Mo 1 Yr 2 Yr 3 Yr 5 Yr 7 Yr 10 Yr 20 Yr 30 Yr

3/2/2020 1.41 1.27 1.13 0.95 0.89 0.84 0.85 0.88 1.01 1.1 1.46 1.66
3/3/2020 1.11 1.05 0.95 0.83 0.73 0.71 0.72 0.77 0.91 1.02 1.44 1.64
3/4/2020 1 0.87 0.72 0.68 0.59 0.67 0.68 0.75 0.9 1.02 1.45 1.67
3/5/2020 0.92 0.83 0.62 0.53 0.48 0.59 0.61 0.67 0.81 0.92 1.34 1.56
3/6/2020 0.79 0.64 0.45 0.41 0.39 0.49 0.53 0.58 0.69 0.74 1.09 1.25
3/9/2020 0.57 0.52 0.33 0.27 0.31 0.38 0.4 0.46 0.56 0.54 0.87 0.99
3/10/2020 0.57 0.55 0.44 0.43 0.43 0.5 0.58 0.63 0.73 0.76 1.16 1.28
3/11/2020 0.42 0.42 0.42 0.4 0.4 0.5 0.58 0.66 0.78 0.82 1.13 1.3
3/12/2020 0.41 0.33 0.33 0.37 0.39 0.5 0.58 0.66 0.82 0.88 1.27 1.49
3/13/2020 0.33 0.3 0.28 0.38 0.38 0.49 0.58 0.7 0.89 0.94 1.31 1.56
3/16/2020 0.25 0.25 0.24 0.29 0.29 0.36 0.43 0.49 0.67 0.73 1.1 1.34
3/17/2020 0.12 0.18 0.19 0.24 0.3 0.47 0.54 0.66 0.91 1.02 1.45 1.63
3/18/2020 0.04 0.03 0.02 0.08 0.21 0.54 0.66 0.79 1.08 1.18 1.6 1.77
3/19/2020 0.04 0.04 0.04 0.06 0.2 0.44 0.53 0.66 1 1.12 1.56 1.78
3/20/2020 0.04 0.05 0.05 0.05 0.15 0.37 0.41 0.52 0.82 0.92 1.35 1.55
3/23/2020 0.01 0.04 0.02 0.08 0.17 0.28 0.31 0.38 0.63 0.76 1.12 1.33
3/24/2020 0.01 0.01 0.01 0.09 0.25 0.38 0.44 0.52 0.75 0.84 1.19 1.39
3/25/2020 0 0 0 0.07 0.19 0.34 0.41 0.56 0.77 0.88 1.23 1.45
3/26/2020 0.01 0.01 0 0.04 0.13 0.3 0.36 0.51 0.72 0.83 1.2 1.42
3/27/2020 0.01 0.03 0.03 0.02 0.11 0.25 0.3 0.41 0.6 0.72 1.09 1.29
3/30/2020 0.04 0.07 0.12 0.12 0.14 0.23 0.29 0.39 0.57 0.7 1.1 1.31
3/31/2020 0.05 0.12 0.11 0.15 0.17 0.23 0.29 0.37 0.55 0.7 1.15 1.35

Source: U.S. Department of Treasury
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C.2 Intrumental Variables in the model

Figure 11: Interbank Stress - Data and Model

C.3 Why are Japan and Switzerland different?
Another important conclusion from Section 2 is that the dollar exchange rate against the Japanese
Yen and, to a lesser extent, the Swiss Franc present a more tenuous relationship with the liquidity
ratio. We can exploit the model to explain what could drive pattern: from the theory, we know that
σust drives the correlation between any exchange rate with the dollar and the dollar liquidity ratio.
Hence, any shock that increases the demand for the Yen and or the Swiss Franc that is correlated
with σust will reduce the regression coefficients for these currencies. In particular, since we do
control for policy variables, the model requires that the funding scale in Yen and Swiss Francs, Θd

t ,
to be correlated with σust to reduce the regression coefficients. In a robustness exercise, we estimate
the following process for the demand shifters of the Yen and Swiss Franc funding:

Θd,x
t =

(
1− ρΘ,x

)
Θd,x
ss exp (Γ (σust /σ

us
ss − 1)) + ρΘ,xΘd,x

ss + εd,x, x ∈ {jp, swz} ,

using the Swiss Franc as a target. In this case, we obtain a posterior estimate for Γ of 0.72. In this
case, as indicated in Table C1, the significance of the regressions for the Yen and the Swiss franc
vanish, as they do in the data.

D Expressions for {Ψ+,Ψ−, χ+, χ−}
Here we reproduce formulas derived from Proposition 1 in Bianchi and Bigio (2017). That proposi-
tion gives us the formulas for the liquidity yield function and the matching probabilities as functions
of the tightness of the interbank market.
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Table C1: Regression Coefficients with Simulated Data for Multiple Currencies

Eur AUS CAN JPN NZ NWY SWE SWZ UK
∆(LiqRatiot) 0.121 0.168 0.170 0.217 0.169 0.156 0.170 0.156 0.163

(0.068) (0.124) (0.060) (0.212) (0.090) (0.065) (0.088) (0.188) (0.077)
∆(πit − πust ) 0.243 0.241 0.209 0.228 0.258 0.219 0.243 0.218 0.243

(0.132) (0.182) (0.111) (0.134) (0.147) (0.112) (0.129) (0.123) (0.139)
LiqRatio(−1) 0.009 0.014 0.009 0.037 0.011 0.008 0.009 0.025 0.011

(0.029) (0.044) (0.027) (0.106) (0.032) (0.027) (0.034) (0.062) (0.031)
Constant 0.016 0.022 0.015 0.060 0.020 0.014 0.016 0.039 0.019

(0.049) (0.069) (0.043) (0.160) (0.051) (0.044) (0.057) (0.103) (0.049)
N 234 234 234 234 234 234 234 234 234
adj. R2 0.046 0.029 0.066 0.037 0.045 0.059 0.053 0.031 0.056
Notes: standard deviation in parenthesis. We consider 4273 sample simulations.

The average interbank rate is:

Rf = (1− η̄ (θ))Rw + η̄ (θ)Rm

where η̄ (θ) is an endogenous bargaining power given by

η̄ (θ) ≡


θ
θ−1

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ > 1

η if θ = 1
θ(1−θ̄)−θ̄
θ̄(1−θ)

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ < 1

.

and η is a parameter associated with the bargaining power of banks with reserve deficits in each
trade—a Nash bargaining coefficient. In addition, θ̄ represents the market tightness after the
interbank-market trading session is over:

θ̄ =


1 + (θ − 1) exp (λ) if θ > 1

1 if θ = 1(
1 +

(
θ−1 − 1

)
exp (λ)

)−1 if θ < 1

.

The parameter λ captures the matching efficiency of the interbank market. Trading probabilities are
given by

Ψ+ =

{
1− e−λ if θ ≥ 1

θ
(
1− e−λ

) if θ < 1
, Ψ− =

{(
1− e−λ

)
θ−1 if θ > 1

1− e−λ if θ ≤ 1
. (D.1)

Finally, using 7 and 6, we arrive at the parameters of the liquidity yield function χ:

χ̄+ = (Rw −Rm)

(
θ̄

θ

)η (
θη θ̄1−η − θ
θ̄ − 1

)
and χ̄− = (Rw −Rm)

(
θ̄

θ

)η (
θη θ̄1−η − 1

θ̄ − 1

)
. (D.2)
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E Proofs

E.1 Preliminaries
Here we provide some intermediate results that we use to prove the propositions.

Recall that the liquidity ratio is denoted byµ ≡ m/d and θ = S−/S+ whereS− = −
´

min {s, 0} dΦ (ω),
S+ =

´
max {s, 0} dΦ (ω) and s = m+ ωd. Then,

θ =−
´
{s<0} s · dΦ (ω;σ)´
{s>0} s · dΦ (ω;σ)

,

=−
mΦ ({s < 0} ;σ) + d

´
{s<0} ω · dΦ (ω;σ)

m (1− Φ ({s > 0} ;σ)) + d
´
{s≥0} ω · dΦ (ω;σ)

.

Note that s < 0 occurs when ω < −µ. Therefore, we express the interbank market tightness as:

θ =−
´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

. (E.1)

With abuse of notation, define θ (µ, σ) as the function that maps µ and σ into a value of θ (thus, in
equilibrium, θ = θ (µ, σ)). We have the following Lemma:

Lemma E.1. Interbank market tightness is decreasing in the liquidity ratio. That is, dθdµ < 0. Moreover,
θ ∈ [0, 1].

Proof. From (G.1), using Leibniz rule, we obtain

dθ

dµ
= θ

(
Φ (−µ;σ)´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
− 1− Φ (−µ;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
. (E.2)

By definition of conditional expectation:

E [µ+ ω|ω < −µ] =

ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ) /Φ (−µ;σ) ,

and
E [µ+ ω|ω > −µ] =

ˆ ∞
−µ

(µ+ ω) · dΦ (ω;σ) / (1− Φ (−µ;σ)) .

Replacing these definitions into (G.2), we obtain:

dθ

dµ
= θ ·

(
1

E [µ+ ω|ω < −µ]
− 1

E [µ+ ω|ω > −µ]

)
< 0,

where the inequality follows because E [µ+ ω|ω < −µ] < 0 and E [µ+ ω|ω > −µ] > 0.
Finally, the bounds on θ follow because limµ→∞ θ = 0 and θ = 1 if µ = 0.

Next, we obtain the derivative of interbank market tightness with respect to σ.

Lemma E.2. Under Assumption 1, we have that ∂θ
∂σ > 0.
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Proof. Passing the differential operator inside the integrals in the numerators, we have that:

∂θ

∂σ
= θ ·

( ´ −µ
−∞ (µ+ ω)φσdω´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
−

´∞
−µ (µ+ ω)φσdω´∞

−µ (µ+ ω) · dΦ (ω;σ)

)

= θ ·
(
∂

∂σ

[
log

(´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

)])
.

Since the withdrawal shock is zero mean,
ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ) +

ˆ ∞
−µ

(µ+ ω) · dΦ (ω;σ) = µ.

Therefore, identity this condition into the derivative just above we obtain:

∂θ

∂σ
= log

(
µ−
´∞
−µ (µ+ ω) · dΦ (ω;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
.

Therefore, ∂θ∂σ > 0 holds if and only if:

∂

∂σ

[ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ)

]
< 0.

Using the integration by parts formula:
ˆ −µ
−∞

(µ+ ω)φσ (ω;σ) dω = (µ+ ω) Φσ (ω;σ) |−µ−∞ −
ˆ −µ
−∞

Φσ (ω;σ) dω

= −
ˆ −µ
−∞

Φσ (ω;σ) dω < 0

where the last equality follows from limω→−∞ ((µ+ ω)) Φσ (ω;σ) = ∂
∂σ [limω→−∞ ((µ+ ω)) Φ (ω;σ)] =

0 and the strict inequality follows from Assumption 1. We conclude that, ∂θ∂σ > 0.

We will also use the results from the following Lemma.

Lemma E.3. The liquidity coefficients have the following derivatives:

∂χ+

∂µ
=
∂χ+

∂θ

∂θ

∂µ
< 0 and ∂χ−

∂µ
=
∂χ−

∂θ

∂θ

∂µ
< 0, (E.3)

∂χ+

∂σ
=
∂χ+

∂θ

∂θ

∂σ
> 0 and ∂χ−

∂µ
=
∂χ−

∂θ

∂θ

∂σ
> 0, (E.4)

∂χ̄+

∂Pt
=
χ̄+

Pt
and ∂χ̄−(θ)

∂Pt
=
χ̄−

Pt
. (E.5)

Proof. Notice first that ∂χ+

∂θ > 0 and ∂χ−
∂θ > 0 is an immediate result from their definitions in

equations (D.2). Applying Lemmas G.1 and G.2, we obtain respectively (G.3) and (G.4).
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In addition, we can express (D.2) as

χ̄+ =
Pt
Pt+1

(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − θ
θ̄ − 1

)
, χ̄− =

Pt
Pt+1

(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − 1

θ̄ − 1

)
(E.6)

Equation (G.5) follows immediately.

It is useful to define L(µ, σ, P ) to be the bond liquidity premium as a function of the liquidity
ratio, the index σ and the current price level. That is,

L(µ, σ, P ) = (1− Φ(−µ, σ)) · χ̄+ (θ(µ, σ), P ) + Φ(−µ, σ) · χ̄− (θ(µ, σ), P ) (E.7)

In equilibrium L(µ, σ, P ) = Rb −Rm. We have the following result.

Lemma E.4. The liquidity bond premium is decreasing in the liquidity ratio and increasing in volatility.
That is, Lµ < 0 and Lσ > 0. In addition, LP = −L/P .

Proof. From (G.7), differentiating Lwith respect to µ:

Lµ =
[
(1− Φ(−µ, σ)) · χ+

θ + Φ(−µ, σ) · χ−θ
]
−
(
χ̄− − χ̄+

)
φ (−µ, σ) . (E.8)

Using that ∂θ
∂µ < 0 from Lemma G.1 and that χ̄− > χ̄+, we arrive at Lµ < 0.

From (G.7), differentiating Lwith respect to σ yields:

LPσ =
∂θ

∂σ

[
(1− Φ(−µ, σ)) · χ+

θ + Φ(−µ, σ) · χ−θ
]

+
(
χ̄− − χ̄+

)
Φσ (−µ, σ) . (E.9)

Using that ∂θ
∂σ > 0 from Lemma G.2 and that χ̄− > χ̄+, we conclude that Lσ > 0. Finally, the

expression for LP follows directly from differentiating Lwith respect to P in (G.5).

We now proceed with the proofs and use that these properties apply for both euros and dollars.

E.2 Proof of Proposition 1
Proof. Part i). By definition, the liquidity ratio µ∗ is given by

µ∗(P ∗, D∗) =
M∗/P ∗

D∗
(E.10)

where we made explicit the dependence of µ∗ on (P ∗, D∗). Using that M∗ is exogenously given,
totally differentiating (G.10) yields

dµ∗ = −µ∗
(
dP ∗

P ∗
+
dD∗

D∗

)
. (E.11)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, D∗), P ∗). (E.12)
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Totally differentiating (G.12) with respect to P ∗ and D∗, and using (G.11), we obtain:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗µ∗

[
µ

(
dP ∗

P ∗
+
dD∗

D∗

)]
+ L∗PdP ∗ (E.13)

where E[P ∗(X ′)] remains constant because the shock is i.i.d. and the loan rate is constant at
Rb = 1/β.

Using L∗P ∗ = L∗
P ∗ from Lemma G.4, Rb = Rm,∗ + L∗ and replacing in (G.13), we arrive to

d logP ∗

d logD∗
=

L∗µ∗µ∗
Rb − L∗µ∗µ∗

∈ (−1, 0) . (E.14)

The bounds follows immediately because L∗µ < 0 as established in Lemma G.4 and from Rb > 0.

Notice also that the euro bond premium remains constant. To see this, we can replace µ =
(M/P )/D in (17) and use (G.1) to obtain

Rb − (1 + im)
P

E[P (X ′)]
=

(
1− Φ

(
−M/P

D

))
χ̄+(θ((M/P )/D, σ))+

Φ

(
−M/P

D

)
χ̄−(θ((M/P )/D, σ)). (E.15)

From (G.15), it follows that P must be constant and thus µ and L are also constant. As a result,
dL∗ = dDLP , dL∗µ∗ = dDLPµ∗ .

By the law of one price and using that P remains constant, we then have d log e
d logD∗ = − L∗µµ∗

Rb−L∗µµ∗
which implies an appreciation of the dollar. Finally, we can rewrite (G.13) as R̄m,∗ (d log e) = dL∗ =
dDLP .

Part ii). When the shock is permanent, expected inflation remains constant. Moreover, given
that nominal policy rates and expected inflation are constant, we have from (18) that L∗ is constant.
Hence, DLP is constant. Furthermore, the fact that L∗ is constant, implies that µ must also be
constant. Thus, using that (G.11) and that M∗ is constant, we have from the law of one price that:

d log e

d logD∗
= −d logP ∗

d logD∗
= 1.

E.3 Proof of Proposition 2
Proof. Part i). Totally differentiating (G.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (E.16)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, σ∗), P ∗). (E.17)
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Totally differentiating (G.17) with respect to P ∗ and σ∗ and using (G.16) yields:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗µ

[
µ

(
dP ∗

P ∗

)]
+ L∗σ∗dσ∗ + L∗PdP ∗ (E.18)

where we used that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗P ∗ = L∗

P ∗ from Lemma G.4, Rb = Rm,∗ + L∗, and replacing in (G.16) , we obtain

d logP ∗

d log σ∗
= − L∗σ∗σ

Rb − L∗µµ∗
< 0 (E.19)

where the sign follows from Lemma G.4. Notice also that the euro bond premium remains constant,
and so do P , µ and L, as demonstrated in the proof of Proposition 1.

By the law of one price, and using that P remains constant, we then have d log e
d logD∗ = L∗σσ∗

Rb−L∗µµ∗
which implies an appreciation of the dollar. Finally, we can rewrite (G.18) as R̄m,∗ (d log e) = dL∗ =
dDLP .

Part ii). When the shock is permanent, expected inflation is constant. Given that nominal policy
rates are constant, L∗ and DLP are constant. Thus,

L∗µ∗dµ∗ + L∗σ∗dσ∗ = 0 (E.20)
and so

d logµ∗

d log σ∗
= −L

∗
σ∗σ
∗

L∗µ∗µ∗
> 0 (E.21)

where the sign follows from L∗µ∗ < 0 and L∗σ∗ > 0 from Lemma G.4. Using that d logµ∗ = −d logP ∗,
from the law of one price, d log e∗

d log σ∗ = d log µ∗
d log σ∗ .

E.4 Approximation to Mean Reverting Shocks
Proof. We now derive approximate analogues to propositions 1 and 2 for cases where shocks are
mean reverting. In particular, shocks follow a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt . (E.22)

We have the following result. We use xss to refer to the deterministic steady-state value of any
variable x. The proof extends the results in Propositions 1 and 2. We first show this intermediate
result. In the model, prices are a function of the aggregate state,X . Thus, an equilibrium will feature
a function P ∗ (Xt) such that P ∗t = P ∗ (Xt). Then, near the steady state, using a Taylor expansion of
first-order with respect to the variable x. We have that:

logP ∗t ≈ logP ∗ss +
P ∗x (xss)xss

P ∗ss

xt − xss
xss

.

Thus, we have that for small deviations around the steady state:

d logP ∗t ≈
P ∗x (xss)xss

P ∗ss
d log xt. (E.23)
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Shifting this condition forward:

d logP ∗t+1 ≈
P ∗x (xss)xss

P ∗ss
d log xt+1

Taking expectations:
E
[
d logP ∗t+1

]
≈ P ∗x (xss)xss

P ∗ss
ρxd log xt. (E.24)

Dividing the left-hand side of (G.24) by (G.23),

E
[
d logP ∗t+1

]
d logP ∗t

= ρxd log xt. (E.25)

Next, we proof the main items of the propositions. The proof uses that for either currency:

∂χ̄+

∂Pt+1
= − χ̄+

E [Pt+1]
, and ∂χ̄−(θ)

∂Pt+1
= − χ̄−

E [Pt+1]
. (E.26)

Hence:
L∗P ∗t+1

= − L
∗

P ∗t+1

Recall that the dollar liquidity premium can be expressed as

Rb − (1 + im,∗)
P ∗t

E
[
P ∗t+1

] = L∗(µ∗(P ∗, D∗), P ∗t , P ∗t+1), (E.27)

where we now make explicit that L∗ depends on both Pt and Pt+1.
Part (i). We present here the proof for item (i). Totally differentiating (G.27) with respect to Pt,

Pt+1, and D∗ and using (G.11) near the steady state, we obtain

−Rm,∗
(
dP ∗t
P ∗t

)
+Rm,∗

E
[
dP ∗t+1

]
E
[
P ∗t+1

] = −L∗µ∗µ∗
(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
+ L∗P ∗t dP

∗
t − L∗P ∗t+1

E
[
dP ∗t+1

]
. (E.28)

Then, collecting terms:

− (Rm,∗ + L∗)
(

1− E
[
d logP ∗t+1

]
d logP ∗t

)
d logP ∗t = −L∗µ∗µ∗

(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
. (E.29)

Substituting Rb = Rm,∗ + L∗ and (G.25), we obtain:

Rb
(

1− ρD∗
)
d logP ∗t ≈ L∗µ∗µ∗

(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
.

Thus, we obtain
d logP ∗

d logD∗
≈

L∗µ∗µ∗
(1− ρD∗)Rb − L∗µ∗µ∗

< 0.
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Then, it follows from the law of one price and the differential form of µ that

εeD∗ ≡
d log e

d logD∗
≈ −

L∗µ∗µ∗
(1− ρD∗)Rb − L∗µ∗µ∗

∈ (0, 1) ,

and
εeµ∗ ≡

d logµ

d logD∗
≈ − (1− ρD∗)Rb

(1− ρD∗)Rb − L∗µ∗µ∗
∈ (−1, 0) .

Part (ii). We present here the proof for item (ii). It follows the same steps as in Part (i): We
totally differentiate (G.27) with respect to Pt, Pt+1, and σ∗ and using (G.11) for the case where
dD∗ = 0. We obtain:

−Rm,∗
(
dP ∗t
P ∗t

)
+Rm,∗

E
[
dP ∗t+1

]
E
[
P ∗t+1

] = L∗σ∗dσ∗ −L∗µ∗µ∗
(
dP ∗t
P ∗t

)
+L∗P ∗t dP

∗
t −L∗P ∗t+1

E
[
dP ∗t+1

]
. (E.30)

Collecting terms and using the same identities that we use to derive G.29, we arrive at:(
Rb
(

1− ρσ∗
)
− L∗µ∗µ∗

)
d logP ∗t ≈ −L∗σ∗dσ∗.

Therefore, we obtain:
d logP ∗

d log σ∗
≈ −L∗σ∗dσ∗

(1− ρσ∗)Rb − L∗µ∗µ∗
< 0.

Then using that µ∗ = M∗/ (P ∗D∗) and that e = P/P ∗ and that P,M∗ andD∗ are constant, we arrive
at:

d logµ∗

d log σ∗
≈ d log e

d log σ∗
= −d logP ∗

d log σ∗
=

L∗σ∗dσ∗
(1− ρσ∗)Rb − L∗µ∗µ∗

> 0.

E.5 Proof of Proposition 3
We again consider that any shock x follows a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt .

We consider only shocks to dollar funding risk and the dollar funding scale and that V ar (εxt ) = 1
for all shocks. Thus

V ar (xt) =
(Σx)2(

1− (ρx)2
) . (E.31)

Consider a univariate linear regression of ∆ log e∗ against ∆ logµ∗ where ∆xt = xt − xt−1. The
regression coefficient is a function of two moments:

γe
∗
µ∗ =

CoV (∆ log e∗,∆ logµ∗)
V ar (∆ logµ∗)

. (E.32)

Consider an endogenous variable Yt in the model. An equilibrium will feature a function Y (Xt)
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such that Yt = Y (Xt), where Xt is the exogenous state. Then, using a first-order Taylor expansion:

log Yt ≈ log Yss +
∑
x∈X

Yx (xss) · xss
Yss

xt − xss
xss

for x ∈ X.

Therefore, we have that:

∆ log Yt ≈
∑
x∈X

Yx (xss) · xss
Yss

(
xt − xss
xss

− xt−1 − xss
xss

)
.

Near a steady state:
xt − xss
xss

− xt−1 − xss
xss

≈ ∆ log (xt) = ρx · (log (xt−1)− log (xss)) + Σxεxt .

Using this identity,

∆ log Yt ≈
∑

x∈X
Yx(xss)·xss

Yss
(ρx · (log (xt−1)− log (xss)) + Σxεxt ) .

Then, for small shocks the log-deviation from steady-state is approximately the elasticity near steady
state.

Yx (x) · x
Yss

= εYx .

Hence, we have that ∆ log e∗t and ∆ logµ∗t follow:

∆ log e∗t = εe
∗
σ∗

(
ρσ
∗ ·
(
log
(
σ∗t−1

)
− log (σ∗ss)

)
+ Σσ∗εσ

∗
t

)
...

+εe
∗
D∗

(
ρD
∗ ·
(
log
(
D∗t−1

)
− log (D∗ss)

)
+ ΣD∗εD

∗
t

)
. (E.33)

Likewise, for the dollar liquidity ratio:

∆ logµ∗t = εµ
∗
σ∗

(
ρσ
∗ ·
(
log
(
σ∗t−1

)
− log (σ∗ss)

)
+ Σσ∗εσ

∗
t

)
...

+εµ
∗
D∗

(
ρD
∗ ·
(
log
(
D∗t−1

)
− log (D∗ss)

)
+ ΣD∗εD

∗
t

)
. (E.34)

From, (G.34) variance of the change in the liquidity ratio is:

V ar (∆ logµ∗) =
(
εµ
∗
σ∗

)2
((

ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+
(
εµ
∗
D∗

)2
((

ρD
∗
)2
V ar (D∗) +

(
ΣD∗

)2
)2

.

Substituting (G.31) into the equation above:

V ar (∆ logµ∗) =
(
εµ
∗
σ∗

)2

(ρσ∗)2
(
Σσ∗

)2(
1− (ρσ∗)2

) +
(

Σσ∗
)2

+
(
εµ
∗
D∗

)2

(ρD∗)2
(
ΣD∗

)2(
1− (ρD∗)2

) +
(

ΣD∗
)2


=

(
εµ
∗
σ∗

)2
(
Σσ∗

)2(
1− (ρσ∗)2

) +
(
εD
∗

σ∗

)2
(
ΣD∗

)2(
1− (ρD∗)2

) .
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Provided that the shocks to σ∗ and D∗ are orthogonal, from (G.33) and (G.34), we have that
following covariance between the change in the exchange rate and the change in the dollar liquidity
ratio:

Cov(∆ log e∗,∆ logµ∗) ≈ εe
∗
σ∗ · εµ

∗
σ∗

((
ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+ εe
∗
D∗ · εµ

∗
D∗

((
ρD
∗
)2
V ar (D∗) + ΣD∗

)2

= εe
∗
σ∗ · εµ

∗
σ∗

((
ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+ εe
∗
D∗ · εµ

∗
D∗

((
ρD
∗
)2
V ar (D∗) + ΣD∗

)2

= εe
∗
σ∗ · εµ

∗
σ∗

(
Σσ∗

)2(
1− (ρσ∗)2

) + εe
∗
D∗ · εµ

∗
D∗

(
ΣD∗

)2(
1− (ρD∗)2

) .
Thus, substituting the approximations to V ar (∆ logµ∗) and Cov(∆ log e∗,∆ logµ∗) back into

(G.32), we obtain that the univariate regression coefficient is approximately:

βe
∗
µ∗ ≈

εe
∗
σ∗ · εµ

∗
σ∗ · V ar (σ∗) + εe

∗
D∗ · ε

µ∗
D∗V ar (D∗)(

εµ
∗
σ∗

)2
V ar (σ∗) +

(
εD
∗

σ∗
)2
V ar (D∗)

.

=
εe
∗
σ∗

εµ
∗
σ∗
·wσ∗ +

εe
∗
D∗

εµ
∗
D∗

wD∗ .

where:

wσ∗ =

(
εµ
∗
σ∗

)2
(

Σσ
∗)2

1−(ρσ∗)
2(

εµ
∗
σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
εµ
∗
D∗

)2 (ΣD∗)
2(

1−(ρD∗)
2
) =

(
εµ
∗
σ∗Σ

σ∗
)2 (

1−
(
ρD
∗)2)(

εµ
∗
σ∗Σ

σ∗
)2 (

1− (ρD∗)2
)

+
(
εµ
∗
D∗Σ

D∗
)2 (

1− (ρσ∗)2
) .

and

wD∗ =

(
εµ
∗
D∗

)2
(

ΣD
∗)2(

1−(ρD∗)
2
)

(
εµ
∗
σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
εD
∗

σ∗
)2 (ΣD∗)

2(
1−(ρD∗)

2
) =

(
εµ
∗
σ∗Σ

σ∗
)2 (

1−
(
ρσ
∗)2)(

εµ
∗
σ∗Σ

σ∗
)2 (

1− (ρD∗)2
)

+
(
εµ
∗
D∗Σ

D∗
)2 (

1− (ρσ∗)2
) .

E.6 Proof of Proposition (4)
Proof. Part i) Totally differentiating (G.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (E.35)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗), P ∗) (E.36)
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Totally differentiating (G.36) with respect to P ∗ and (1 + im,∗), and using (G.35), we obtain

−Rm,∗
(
dP ∗

P ∗

)
− P ∗

E[P ∗(X ′)]
d (1 + im,∗) = −L∗µ∗µ∗

(
dP ∗

P ∗

)
+ L∗P ∗dP ∗ (E.37)

where notice that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗P ∗ = L∗

P ∗ from Lemma G.4, Rb = Rm,∗ + L∗, and R̄m = P ∗(1 + im,∗)/E[P ∗(X ′)], and
replacing these equalities in (G.37), we obtain:

d logP ∗

d log (1 + im,∗)
= − R̄m

Rb − L∗µ∗µ∗
∈ (−1, 0) (E.38)

where the sign follows from Lemma G.4. The upper bound follows because Rb > R̄m.
Notice also that the euro bond premium remains constant, and so doP , µ andL, as demonstrated

in the proof of Proposition 1. This implies that dL∗ = dDLP , dL∗µ∗ = dDLPµ∗ .
By the law of one price, we then have d log e∗

d log(1+im,∗) = R̄m

Rb−L∗µµ∗
which implies an appreciation of

the dollar.
Finally, we can rewrite (G.37) as

Rm,∗ (d log e− d log (1 + im,∗)) = dL∗ = dDLP < 0 (E.39)

where the sign follows from the bounds on (G.38).
Part ii). When the shock is permanent, expected inflation is constant. From (18), it follows that

the increase in 1 + im,∗ leads to a decrease in L∗ and a reduction in DLP. Total differentiation of
(G.36) with respect to 1 + im,∗ and µ∗ yields

− R̄m,∗d log(1 + im,∗) = L∗µµ∗d logµ∗, (E.40)
and thus

d logµ∗

d log(1 + im,∗)
= − R̄m,∗

L∗µ∗µ∗
> 0. (E.41)

where the sign follows from Lemma G.4. Using that d logµ∗ = −d logP ∗ when M∗ and D∗ are
constant, we have from the law of one price that d log e∗

d log 1+im,∗ = R̄m,∗
−L∗µµ∗ . Finally

dDLP = −R̄m,∗d log(1 + im,∗)

.

Proofs of Proposition 5 (Open-Market Operations)

Preliminary Observations. We make two assumptions: first, deposits and securities are perfect
substitutes, but the demand for the sum of deposits and securities is perfectly inelastic. Second, the
supply of securities is fixed. Let SH,∗ indicate the household holding of dollar securities and SG,∗
the central bank’s holdings of dollar securities. Thus, we have SH,∗ + SG,∗ = S∗ where S∗ is a fixed
supply of securities.

Consider a purchase of securities with reserves. The central banks’ budget constraint in this
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case is modified to:

M∗t + T ∗t +W ∗t+1 +
(

1 + id,∗t
)
· P ∗t−1S

G,∗
t−1 = P ∗t · SG,∗t +M∗t−1(1 + im,∗t ) +W ∗t (1 + iw,∗t ).

As in earlier proofs, we avoid time subscripts. Consider a small change in the holdings of central
bank securities purchased with reserves. We obtain:

dM∗ = SG,∗dP ∗ + P ∗dSG,∗ = P ∗SG,∗
dP ∗

P ∗
+ P ∗SG,∗

dSG,∗

SG,∗
. (E.42)

Assuming that the central bank has a balance sheet such that Υ of its liabilities are backed with
securities,

Υ∗ =
P ∗SG,∗

M∗
,

we modify (G.42) to obtain:

dM∗

M∗
=
P ∗SG,∗

M

(
dP ∗

P ∗
+
dSG,∗

SG,∗

)
= Υ∗

(
dP ∗

P ∗
+
dSG,∗

SG,∗

)
.

Thus, expressed in logs, this condition is:

d logM∗ = Υ∗
(
d logP ∗ + d logSG,∗

)
. (E.43)

The equation accounts for the fact that the growth in the money supply needed to finance the
open-market operation has consider the change in the price level.

Next, since households are inelastic regarding the some of securities and deposits, it must be
that dD∗ = −dSH,∗. Since the supply of the security is fixed −dSH,∗ = dSG,∗. Hence,

dD∗ = dSG,∗.

Next, we express the change in the liquidity ratio in its differential form:

dµ∗ = µ∗
(
dM∗

M∗
−
(
dP ∗

P ∗
+
dD∗

D∗

))
,

= µ∗
(
dM∗

M∗
−
(
dP ∗

P ∗
+ µ∗Υ∗

dSG,∗

SG,∗

))
,

where the second line applies the definitions of µ∗ and Υ∗.
In log terms, the last equation is:

d logµ∗ =
(
d logM∗ −

(
d logP ∗ + Υ∗µ∗ · d logSG,∗

))
.

Substituting (G.43) we obtain:

d logµ∗ =
(
Υ∗
(
d logP ∗ + d logSG,∗

)
− d logP ∗ −Υ∗µ∗ · d logSG,∗

)
= − (1−Υ∗) d logP ∗ + Υ∗ (1− µ∗) · d logSG,∗. (E.44)
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Item (i). We now derive the main results. We follow the earlier proofs. Totally differentiating the
liquidity premium with respect to µ∗ and P ∗, we obtain:

R̄m,∗d logP ∗ + L∗d logP ∗ + L∗µ∗µ∗d logµ∗ = 0. (E.45)

Substituting (G.44) and collecting terms we obtain:(
R̄m,∗ + L∗ − (1−Υ∗)LP∗µ∗µ∗

)
d logP ∗ + L∗µ∗µ∗Υ∗ (1− µ∗) · d logSG,∗ = 0. (E.46)

Thus, we obtain:
d logP ∗

d logSG,∗
=
−LP∗µ∗µ∗ (1− µ∗) Υ∗

Rb − (1−Υ∗)LP∗µ∗µ∗
> 0.

If we substitute this expression in the left back into (G.44) we obtain:

d logµ∗

d logSG,∗
=

RbΥ∗ (1− µ∗)
Rb − (1−Υ∗)LP∗µ∗µ∗

> 0.

Finally, by the law of one price:

d log e = −d logP ∗ =
L∗µ∗µ∗ (1− µ∗) Υ∗

Rb − (1−Υ∗)L∗µ∗µ∗
< 0.

Finally, the excess-bond premium and the dollar liquidity premium is:

dL∗ = dDLP∗ = −R∗,md logP ∗ < 0.

Item (ii). If the shock is permanent expected inflation does not change. Since nominal rates are
fixed, we have that the dollar liquidity ratio must remain constant:

d logµ∗ = 0. (E.47)
Moreover, dBP∗ = dDLP∗ = 0. From (G.44)

d logP ∗

d logSG,∗
=

Υ∗

(1−Υ∗)
(1− µ∗) > 0·

By the law of one price then:

d log e

d logSG,∗
= − d logP ∗

d logSG,∗
= − Υ∗

(1−Υ∗)
(1− µ∗) .
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F Microfoundations for Deposit Supplies and Loan De-
mands

F.1 Preliminaries
Here we provide some intermediate results that we use to prove the propositions.

Recall that the liquidity ratio is denoted byµ ≡ m/d and θ = S−/S+ whereS− = −
´

min {s, 0} dΦ (ω),
S+ =

´
max {s, 0} dΦ (ω) and s = m+ ωd. Then,

θ =−
´
{s<0} s · dΦ (ω;σ)´
{s>0} s · dΦ (ω;σ)

,

=−
mΦ ({s < 0} ;σ) + d

´
{s<0} ω · dΦ (ω;σ)

m (1− Φ ({s > 0} ;σ)) + d
´
{s≥0} ω · dΦ (ω;σ)

.

Note that s < 0 occurs when ω < −µ. Therefore, we express the interbank market tightness as:

θ =−
´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

. (F.1)

With abuse of notation, define θ (µ, σ) as the function that maps µ and σ into a value of θ (thus, in
equilibrium, θ = θ (µ, σ)). We have the following Lemma:

Lemma F.1. Interbank market tightness is decreasing in the liquidity ratio. That is, dθdµ < 0. Moreover,
θ ∈ [0, 1].

Proof. From (G.1), using Leibniz rule, we obtain

dθ

dµ
= θ

(
Φ (−µ;σ)´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
− 1− Φ (−µ;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
. (F.2)

By definition of conditional expectation:

E [µ+ ω|ω < −µ] =

ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ) /Φ (−µ;σ) ,

and
E [µ+ ω|ω > −µ] =

ˆ ∞
−µ

(µ+ ω) · dΦ (ω;σ) / (1− Φ (−µ;σ)) .

Replacing these definitions into (G.2), we obtain:

dθ

dµ
= θ ·

(
1

E [µ+ ω|ω < −µ]
− 1

E [µ+ ω|ω > −µ]

)
< 0,

where the inequality follows because E [µ+ ω|ω < −µ] < 0 and E [µ+ ω|ω > −µ] > 0.
Finally, the bounds on θ follow because limµ→∞ θ = 0 and θ = 1 if µ = 0.

Next, we obtain the derivative of interbank market tightness with respect to σ.
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Lemma F.2. Under Assumption 1, we have that ∂θ
∂σ > 0.

Proof. Passing the differential operator inside the integrals in the numerators, we have that:

∂θ

∂σ
= θ ·

( ´ −µ
−∞ (µ+ ω)φσdω´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
−

´∞
−µ (µ+ ω)φσdω´∞

−µ (µ+ ω) · dΦ (ω;σ)

)

= θ ·
(
∂

∂σ

[
log

(´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

)])
.

Since the withdrawal shock is zero mean,
ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ) +

ˆ ∞
−µ

(µ+ ω) · dΦ (ω;σ) = µ.

Therefore, identity this condition into the derivative just above we obtain:

∂θ

∂σ
= log

(
µ−
´∞
−µ (µ+ ω) · dΦ (ω;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
.

Therefore, ∂θ∂σ > 0 holds if and only if:

∂

∂σ

[ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ)

]
< 0.

Using the integration by parts formula:
ˆ −µ
−∞

(µ+ ω)φσ (ω;σ) dω = (µ+ ω) Φσ (ω;σ) |−µ−∞ −
ˆ −µ
−∞

Φσ (ω;σ) dω

= −
ˆ −µ
−∞

Φσ (ω;σ) dω < 0

where the last equality follows from limω→−∞ ((µ+ ω)) Φσ (ω;σ) = ∂
∂σ [limω→−∞ ((µ+ ω)) Φ (ω;σ)] =

0 and the strict inequality follows from Assumption 1. We conclude that, ∂θ∂σ > 0.

We will also use the results from the following Lemma.
Lemma F.3. The liquidity coefficients have the following derivatives:

∂χ+

∂µ
=
∂χ+

∂θ

∂θ

∂µ
< 0 and ∂χ−

∂µ
=
∂χ−

∂θ

∂θ

∂µ
< 0, (F.3)

∂χ+

∂σ
=
∂χ+

∂θ

∂θ

∂σ
> 0 and ∂χ−

∂µ
=
∂χ−

∂θ

∂θ

∂σ
> 0, (F.4)

∂χ̄+

∂Pt
=
χ̄+

Pt
and ∂χ̄−(θ)

∂Pt
=
χ̄−

Pt
. (F.5)

Proof. Notice first that ∂χ+

∂θ > 0 and ∂χ−
∂θ > 0 is an immediate result from their definitions in

equations (D.2). Applying Lemmas G.1 and G.2, we obtain respectively (G.3) and (G.4).
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In addition, we can express (D.2) as

χ̄+ =
Pt
Pt+1

(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − θ
θ̄ − 1

)
, χ̄− =

Pt
Pt+1

(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − 1

θ̄ − 1

)
(F.6)

Equation (G.5) follows immediately.

It is useful to define L(µ, σ, P ) to be the bond liquidity premium as a function of the liquidity
ratio, the index σ and the current price level. That is,

L(µ, σ, P ) = (1− Φ(−µ, σ)) · χ̄+ (θ(µ, σ), P ) + Φ(−µ, σ) · χ̄− (θ(µ, σ), P ) (F.7)

In equilibrium L(µ, σ, P ) = Rb −Rm. We have the following result.

Lemma F.4. The liquidity bond premium is decreasing in the liquidity ratio and increasing in volatility.
That is, Lµ < 0 and Lσ > 0. In addition, LP = −L/P .

Proof. From (G.7), differentiating Lwith respect to µ:

Lµ =
[
(1− Φ(−µ, σ)) · χ+

θ + Φ(−µ, σ) · χ−θ
]
−
(
χ̄− − χ̄+

)
φ (−µ, σ) . (F.8)

Using that ∂θ
∂µ < 0 from Lemma G.1 and that χ̄− > χ̄+, we arrive at Lµ < 0.

From (G.7), differentiating Lwith respect to σ yields:

LPσ =
∂θ

∂σ

[
(1− Φ(−µ, σ)) · χ+

θ + Φ(−µ, σ) · χ−θ
]

+
(
χ̄− − χ̄+

)
Φσ (−µ, σ) . (F.9)

Using that ∂θ
∂σ > 0 from Lemma G.2 and that χ̄− > χ̄+, we conclude that Lσ > 0. Finally, the

expression for LP follows directly from differentiating Lwith respect to P in (G.5).

We now proceed with the proofs and use that these properties apply for both euros and dollars.

F.2 Proof of Proposition 1
Proof. Part i). By definition, the liquidity ratio µ∗ is given by

µ∗(P ∗, D∗) =
M∗/P ∗

D∗
(F.10)

where we made explicit the dependence of µ∗ on (P ∗, D∗). Using that M∗ is exogenously given,
totally differentiating (G.10) yields

dµ∗ = −µ∗
(
dP ∗

P ∗
+
dD∗

D∗

)
. (F.11)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, D∗), P ∗). (F.12)
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Totally differentiating (G.12) with respect to P ∗ and D∗, and using (G.11), we obtain:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗µ∗

[
µ

(
dP ∗

P ∗
+
dD∗

D∗

)]
+ L∗PdP ∗ (F.13)

where E[P ∗(X ′)] remains constant because the shock is i.i.d. and the loan rate is constant at
Rb = 1/β.

Using L∗P ∗ = L∗
P ∗ from Lemma G.4, Rb = Rm,∗ + L∗ and replacing in (G.13), we arrive to

d logP ∗

d logD∗
=

L∗µ∗µ∗
Rb − L∗µ∗µ∗

∈ (−1, 0) . (F.14)

The bounds follows immediately because L∗µ < 0 as established in Lemma G.4 and from Rb > 0.

Notice also that the euro bond premium remains constant. To see this, we can replace µ =
(M/P )/D in (17) and use (G.1) to obtain

Rb − (1 + im)
P

E[P (X ′)]
=

(
1− Φ

(
−M/P

D

))
χ̄+(θ((M/P )/D, σ))+

Φ

(
−M/P

D

)
χ̄−(θ((M/P )/D, σ)). (F.15)

From (G.15), it follows that P must be constant and thus µ and L are also constant. As a result,
dL∗ = dDLP , dL∗µ∗ = dDLPµ∗ .

By the law of one price and using that P remains constant, we then have d log e
d logD∗ = − L∗µµ∗

Rb−L∗µµ∗
which implies an appreciation of the dollar. Finally, we can rewrite (G.13) as R̄m,∗ (d log e) = dL∗ =
dDLP .

Part ii). When the shock is permanent, expected inflation remains constant. Moreover, given
that nominal policy rates and expected inflation are constant, we have from (18) that L∗ is constant.
Hence, DLP is constant. Furthermore, the fact that L∗ is constant, implies that µ must also be
constant. Thus, using that (G.11) and that M∗ is constant, we have from the law of one price that:

d log e

d logD∗
= −d logP ∗

d logD∗
= 1.

F.3 Proof of Proposition 2
Proof. Part i). Totally differentiating (G.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (F.16)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, σ∗), P ∗). (F.17)
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Totally differentiating (G.17) with respect to P ∗ and σ∗ and using (G.16) yields:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗µ

[
µ

(
dP ∗

P ∗

)]
+ L∗σ∗dσ∗ + L∗PdP ∗ (F.18)

where we used that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗P ∗ = L∗

P ∗ from Lemma G.4, Rb = Rm,∗ + L∗, and replacing in (G.16) , we obtain

d logP ∗

d log σ∗
= − L∗σ∗σ

Rb − L∗µµ∗
< 0 (F.19)

where the sign follows from Lemma G.4. Notice also that the euro bond premium remains constant,
and so do P , µ and L, as demonstrated in the proof of Proposition 1.

By the law of one price, and using that P remains constant, we then have d log e
d logD∗ = L∗σσ∗

Rb−L∗µµ∗
which implies an appreciation of the dollar. Finally, we can rewrite (G.18) as R̄m,∗ (d log e) = dL∗ =
dDLP .

Part ii). When the shock is permanent, expected inflation is constant. Given that nominal policy
rates are constant, L∗ and DLP are constant. Thus,

L∗µ∗dµ∗ + L∗σ∗dσ∗ = 0 (F.20)
and so

d logµ∗

d log σ∗
= −L

∗
σ∗σ
∗

L∗µ∗µ∗
> 0 (F.21)

where the sign follows from L∗µ∗ < 0 and L∗σ∗ > 0 from Lemma G.4. Using that d logµ∗ = −d logP ∗,
from the law of one price, d log e∗

d log σ∗ = d log µ∗
d log σ∗ .

F.4 Approximation to Mean Reverting Shocks
Proof. We now derive approximate analogues to propositions 1 and 2 for cases where shocks are
mean reverting. In particular, shocks follow a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt . (F.22)

We have the following result. We use xss to refer to the deterministic steady-state value of any
variable x. The proof extends the results in Propositions 1 and 2. We first show this intermediate
result. In the model, prices are a function of the aggregate state,X . Thus, an equilibrium will feature
a function P ∗ (Xt) such that P ∗t = P ∗ (Xt). Then, near the steady state, using a Taylor expansion of
first-order with respect to the variable x. We have that:

logP ∗t ≈ logP ∗ss +
P ∗x (xss)xss

P ∗ss

xt − xss
xss

.

Thus, we have that for small deviations around the steady state:

d logP ∗t ≈
P ∗x (xss)xss

P ∗ss
d log xt. (F.23)
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Shifting this condition forward:

d logP ∗t+1 ≈
P ∗x (xss)xss

P ∗ss
d log xt+1

Taking expectations:
E
[
d logP ∗t+1

]
≈ P ∗x (xss)xss

P ∗ss
ρxd log xt. (F.24)

Dividing the left-hand side of (G.24) by (G.23),

E
[
d logP ∗t+1

]
d logP ∗t

= ρxd log xt. (F.25)

Next, we proof the main items of the propositions. The proof uses that for either currency:

∂χ̄+

∂Pt+1
= − χ̄+

E [Pt+1]
, and ∂χ̄−(θ)

∂Pt+1
= − χ̄−

E [Pt+1]
. (F.26)

Hence:
L∗P ∗t+1

= − L
∗

P ∗t+1

Recall that the dollar liquidity premium can be expressed as

Rb − (1 + im,∗)
P ∗t

E
[
P ∗t+1

] = L∗(µ∗(P ∗, D∗), P ∗t , P ∗t+1), (F.27)

where we now make explicit that L∗ depends on both Pt and Pt+1.
Part (i). We present here the proof for item (i). Totally differentiating (G.27) with respect to Pt,

Pt+1, and D∗ and using (G.11) near the steady state, we obtain

−Rm,∗
(
dP ∗t
P ∗t

)
+Rm,∗

E
[
dP ∗t+1

]
E
[
P ∗t+1

] = −L∗µ∗µ∗
(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
+ L∗P ∗t dP

∗
t − L∗P ∗t+1

E
[
dP ∗t+1

]
. (F.28)

Then, collecting terms:

− (Rm,∗ + L∗)
(

1− E
[
d logP ∗t+1

]
d logP ∗t

)
d logP ∗t = −L∗µ∗µ∗

(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
. (F.29)

Substituting Rb = Rm,∗ + L∗ and (G.25), we obtain:

Rb
(

1− ρD∗
)
d logP ∗t ≈ L∗µ∗µ∗

(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
.

Thus, we obtain
d logP ∗

d logD∗
≈

L∗µ∗µ∗
(1− ρD∗)Rb − L∗µ∗µ∗

< 0.

37



Then, it follows from the law of one price and the differential form of µ that

εeD∗ ≡
d log e

d logD∗
≈ −

L∗µ∗µ∗
(1− ρD∗)Rb − L∗µ∗µ∗

∈ (0, 1) ,

and
εeµ∗ ≡

d logµ

d logD∗
≈ − (1− ρD∗)Rb

(1− ρD∗)Rb − L∗µ∗µ∗
∈ (−1, 0) .

Part (ii). We present here the proof for item (ii). It follows the same steps as in Part (i): We
totally differentiate (G.27) with respect to Pt, Pt+1, and σ∗ and using (G.11) for the case where
dD∗ = 0. We obtain:

−Rm,∗
(
dP ∗t
P ∗t

)
+Rm,∗

E
[
dP ∗t+1

]
E
[
P ∗t+1

] = L∗σ∗dσ∗ −L∗µ∗µ∗
(
dP ∗t
P ∗t

)
+L∗P ∗t dP

∗
t −L∗P ∗t+1

E
[
dP ∗t+1

]
. (F.30)

Collecting terms and using the same identities that we use to derive G.29, we arrive at:(
Rb
(

1− ρσ∗
)
− L∗µ∗µ∗

)
d logP ∗t ≈ −L∗σ∗dσ∗.

Therefore, we obtain:
d logP ∗

d log σ∗
≈ −L∗σ∗dσ∗

(1− ρσ∗)Rb − L∗µ∗µ∗
< 0.

Then using that µ∗ = M∗/ (P ∗D∗) and that e = P/P ∗ and that P,M∗ andD∗ are constant, we arrive
at:

d logµ∗

d log σ∗
≈ d log e

d log σ∗
= −d logP ∗

d log σ∗
=

L∗σ∗dσ∗
(1− ρσ∗)Rb − L∗µ∗µ∗

> 0.

F.5 Proof of Proposition 3
We again consider that any shock x follows a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt .

We consider only shocks to dollar funding risk and the dollar funding scale and that V ar (εxt ) = 1
for all shocks. Thus

V ar (xt) =
(Σx)2(

1− (ρx)2
) . (F.31)

Consider a univariate linear regression of ∆ log e∗ against ∆ logµ∗ where ∆xt = xt − xt−1. The
regression coefficient is a function of two moments:

γe
∗
µ∗ =

CoV (∆ log e∗,∆ logµ∗)
V ar (∆ logµ∗)

. (F.32)

Consider an endogenous variable Yt in the model. An equilibrium will feature a function Y (Xt)
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such that Yt = Y (Xt), where Xt is the exogenous state. Then, using a first-order Taylor expansion:

log Yt ≈ log Yss +
∑
x∈X

Yx (xss) · xss
Yss

xt − xss
xss

for x ∈ X.

Therefore, we have that:

∆ log Yt ≈
∑
x∈X

Yx (xss) · xss
Yss

(
xt − xss
xss

− xt−1 − xss
xss

)
.

Near a steady state:
xt − xss
xss

− xt−1 − xss
xss

≈ ∆ log (xt) = ρx · (log (xt−1)− log (xss)) + Σxεxt .

Using this identity,

∆ log Yt ≈
∑

x∈X
Yx(xss)·xss

Yss
(ρx · (log (xt−1)− log (xss)) + Σxεxt ) .

Then, for small shocks the log-deviation from steady-state is approximately the elasticity near steady
state.

Yx (x) · x
Yss

= εYx .

Hence, we have that ∆ log e∗t and ∆ logµ∗t follow:

∆ log e∗t = εe
∗
σ∗

(
ρσ
∗ ·
(
log
(
σ∗t−1

)
− log (σ∗ss)

)
+ Σσ∗εσ

∗
t

)
...

+εe
∗
D∗

(
ρD
∗ ·
(
log
(
D∗t−1

)
− log (D∗ss)

)
+ ΣD∗εD

∗
t

)
. (F.33)

Likewise, for the dollar liquidity ratio:

∆ logµ∗t = εµ
∗
σ∗

(
ρσ
∗ ·
(
log
(
σ∗t−1

)
− log (σ∗ss)

)
+ Σσ∗εσ

∗
t

)
...

+εµ
∗
D∗

(
ρD
∗ ·
(
log
(
D∗t−1

)
− log (D∗ss)

)
+ ΣD∗εD

∗
t

)
. (F.34)

From, (G.34) variance of the change in the liquidity ratio is:

V ar (∆ logµ∗) =
(
εµ
∗
σ∗

)2
((

ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+
(
εµ
∗
D∗

)2
((

ρD
∗
)2
V ar (D∗) +

(
ΣD∗

)2
)2

.

Substituting (G.31) into the equation above:

V ar (∆ logµ∗) =
(
εµ
∗
σ∗

)2

(ρσ∗)2
(
Σσ∗

)2(
1− (ρσ∗)2

) +
(

Σσ∗
)2

+
(
εµ
∗
D∗

)2

(ρD∗)2
(
ΣD∗

)2(
1− (ρD∗)2

) +
(

ΣD∗
)2


=

(
εµ
∗
σ∗

)2
(
Σσ∗

)2(
1− (ρσ∗)2

) +
(
εD
∗

σ∗

)2
(
ΣD∗

)2(
1− (ρD∗)2

) .
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Provided that the shocks to σ∗ and D∗ are orthogonal, from (G.33) and (G.34), we have that
following covariance between the change in the exchange rate and the change in the dollar liquidity
ratio:

Cov(∆ log e∗,∆ logµ∗) ≈ εe
∗
σ∗ · εµ

∗
σ∗

((
ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+ εe
∗
D∗ · εµ

∗
D∗

((
ρD
∗
)2
V ar (D∗) + ΣD∗

)2

= εe
∗
σ∗ · εµ

∗
σ∗

((
ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+ εe
∗
D∗ · εµ

∗
D∗

((
ρD
∗
)2
V ar (D∗) + ΣD∗

)2

= εe
∗
σ∗ · εµ

∗
σ∗

(
Σσ∗

)2(
1− (ρσ∗)2

) + εe
∗
D∗ · εµ

∗
D∗

(
ΣD∗

)2(
1− (ρD∗)2

) .
Thus, substituting the approximations to V ar (∆ logµ∗) and Cov(∆ log e∗,∆ logµ∗) back into

(G.32), we obtain that the univariate regression coefficient is approximately:

βe
∗
µ∗ ≈

εe
∗
σ∗ · εµ

∗
σ∗ · V ar (σ∗) + εe

∗
D∗ · ε

µ∗
D∗V ar (D∗)(

εµ
∗
σ∗

)2
V ar (σ∗) +

(
εD
∗

σ∗
)2
V ar (D∗)

.

=
εe
∗
σ∗

εµ
∗
σ∗
·wσ∗ +

εe
∗
D∗

εµ
∗
D∗

wD∗ .

where:

wσ∗ =

(
εµ
∗
σ∗

)2
(

Σσ
∗)2

1−(ρσ∗)
2(

εµ
∗
σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
εµ
∗
D∗

)2 (ΣD∗)
2(

1−(ρD∗)
2
) =

(
εµ
∗
σ∗Σ

σ∗
)2 (

1−
(
ρD
∗)2)(

εµ
∗
σ∗Σ

σ∗
)2 (

1− (ρD∗)2
)

+
(
εµ
∗
D∗Σ

D∗
)2 (

1− (ρσ∗)2
) .

and

wD∗ =

(
εµ
∗
D∗

)2
(

ΣD
∗)2(

1−(ρD∗)
2
)

(
εµ
∗
σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
εD
∗

σ∗
)2 (ΣD∗)

2(
1−(ρD∗)

2
) =

(
εµ
∗
σ∗Σ

σ∗
)2 (

1−
(
ρσ
∗)2)(

εµ
∗
σ∗Σ

σ∗
)2 (

1− (ρD∗)2
)

+
(
εµ
∗
D∗Σ

D∗
)2 (

1− (ρσ∗)2
) .

F.6 Proof of Proposition (4)
Proof. Part i) Totally differentiating (G.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (F.35)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗), P ∗) (F.36)
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Totally differentiating (G.36) with respect to P ∗ and (1 + im,∗), and using (G.35), we obtain

−Rm,∗
(
dP ∗

P ∗

)
− P ∗

E[P ∗(X ′)]
d (1 + im,∗) = −L∗µ∗µ∗

(
dP ∗

P ∗

)
+ L∗P ∗dP ∗ (F.37)

where notice that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗P ∗ = L∗

P ∗ from Lemma G.4, Rb = Rm,∗ + L∗, and R̄m = P ∗(1 + im,∗)/E[P ∗(X ′)], and
replacing these equalities in (G.37), we obtain:

d logP ∗

d log (1 + im,∗)
= − R̄m

Rb − L∗µ∗µ∗
∈ (−1, 0) (F.38)

where the sign follows from Lemma G.4. The upper bound follows because Rb > R̄m.
Notice also that the euro bond premium remains constant, and so doP , µ andL, as demonstrated

in the proof of Proposition 1. This implies that dL∗ = dDLP , dL∗µ∗ = dDLPµ∗ .
By the law of one price, we then have d log e∗

d log(1+im,∗) = R̄m

Rb−L∗µµ∗
which implies an appreciation of

the dollar.
Finally, we can rewrite (G.37) as

Rm,∗ (d log e− d log (1 + im,∗)) = dL∗ = dDLP < 0 (F.39)

where the sign follows from the bounds on (G.38).
Part ii). When the shock is permanent, expected inflation is constant. From (18), it follows that

the increase in 1 + im,∗ leads to a decrease in L∗ and a reduction in DLP. Total differentiation of
(G.36) with respect to 1 + im,∗ and µ∗ yields

− R̄m,∗d log(1 + im,∗) = L∗µµ∗d logµ∗, (F.40)
and thus

d logµ∗

d log(1 + im,∗)
= − R̄m,∗

L∗µ∗µ∗
> 0. (F.41)

where the sign follows from Lemma G.4. Using that d logµ∗ = −d logP ∗ when M∗ and D∗ are
constant, we have from the law of one price that d log e∗

d log 1+im,∗ = R̄m,∗
−L∗µµ∗ . Finally

dDLP = −R̄m,∗d log(1 + im,∗)

.

Proofs of Proposition 5 (Open-Market Operations)

Preliminary Observations. We make two assumptions: first, deposits and securities are perfect
substitutes, but the demand for the sum of deposits and securities is perfectly inelastic. Second, the
supply of securities is fixed. Let SH,∗ indicate the household holding of dollar securities and SG,∗
the central bank’s holdings of dollar securities. Thus, we have SH,∗ + SG,∗ = S∗ where S∗ is a fixed
supply of securities.

Consider a purchase of securities with reserves. The central banks’ budget constraint in this
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case is modified to:

M∗t + T ∗t +W ∗t+1 +
(

1 + id,∗t
)
· P ∗t−1S

G,∗
t−1 = P ∗t · SG,∗t +M∗t−1(1 + im,∗t ) +W ∗t (1 + iw,∗t ).

As in earlier proofs, we avoid time subscripts. Consider a small change in the holdings of central
bank securities purchased with reserves. We obtain:

dM∗ = SG,∗dP ∗ + P ∗dSG,∗ = P ∗SG,∗
dP ∗

P ∗
+ P ∗SG,∗

dSG,∗

SG,∗
. (F.42)

Assuming that the central bank has a balance sheet such that Υ of its liabilities are backed with
securities,

Υ∗ =
P ∗SG,∗

M∗
,

we modify (G.42) to obtain:

dM∗

M∗
=
P ∗SG,∗

M

(
dP ∗

P ∗
+
dSG,∗

SG,∗

)
= Υ∗

(
dP ∗

P ∗
+
dSG,∗

SG,∗

)
.

Thus, expressed in logs, this condition is:

d logM∗ = Υ∗
(
d logP ∗ + d logSG,∗

)
. (F.43)

The equation accounts for the fact that the growth in the money supply needed to finance the
open-market operation has consider the change in the price level.

Next, since households are inelastic regarding the some of securities and deposits, it must be
that dD∗ = −dSH,∗. Since the supply of the security is fixed −dSH,∗ = dSG,∗. Hence,

dD∗ = dSG,∗.

Next, we express the change in the liquidity ratio in its differential form:

dµ∗ = µ∗
(
dM∗

M∗
−
(
dP ∗

P ∗
+
dD∗

D∗

))
,

= µ∗
(
dM∗

M∗
−
(
dP ∗

P ∗
+ µ∗Υ∗

dSG,∗

SG,∗

))
,

where the second line applies the definitions of µ∗ and Υ∗.
In log terms, the last equation is:

d logµ∗ =
(
d logM∗ −

(
d logP ∗ + Υ∗µ∗ · d logSG,∗

))
.

Substituting (G.43) we obtain:

d logµ∗ =
(
Υ∗
(
d logP ∗ + d logSG,∗

)
− d logP ∗ −Υ∗µ∗ · d logSG,∗

)
= − (1−Υ∗) d logP ∗ + Υ∗ (1− µ∗) · d logSG,∗. (F.44)
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Item (i). We now derive the main results. We follow the earlier proofs. Totally differentiating the
liquidity premium with respect to µ∗ and P ∗, we obtain:

R̄m,∗d logP ∗ + L∗d logP ∗ + L∗µ∗µ∗d logµ∗ = 0. (F.45)

Substituting (G.44) and collecting terms we obtain:(
R̄m,∗ + L∗ − (1−Υ∗)LP∗µ∗µ∗

)
d logP ∗ + L∗µ∗µ∗Υ∗ (1− µ∗) · d logSG,∗ = 0. (F.46)

Thus, we obtain:
d logP ∗

d logSG,∗
=
−LP∗µ∗µ∗ (1− µ∗) Υ∗

Rb − (1−Υ∗)LP∗µ∗µ∗
> 0.

If we substitute this expression in the left back into (G.44) we obtain:

d logµ∗

d logSG,∗
=

RbΥ∗ (1− µ∗)
Rb − (1−Υ∗)LP∗µ∗µ∗

> 0.

Finally, by the law of one price:

d log e = −d logP ∗ =
L∗µ∗µ∗ (1− µ∗) Υ∗

Rb − (1−Υ∗)L∗µ∗µ∗
< 0.

Finally, the excess-bond premium and the dollar liquidity premium is:

dL∗ = dDLP∗ = −R∗,md logP ∗ < 0.

Item (ii). If the shock is permanent expected inflation does not change. Since nominal rates are
fixed, we have that the dollar liquidity ratio must remain constant:

d logµ∗ = 0. (F.47)
Moreover, dBP∗ = dDLP∗ = 0. From (G.44)

d logP ∗

d logSG,∗
=

Υ∗

(1−Υ∗)
(1− µ∗) > 0·

By the law of one price then:

d log e

d logSG,∗
= − d logP ∗

d logSG,∗
= − Υ∗

(1−Υ∗)
(1− µ∗) .

Here we provide the micro-foundations for the loan demand and deposit supply schedules in a
deterministic version of the model. We consider a representative global household. The household
saves in dollar and euro deposits, supplies labor to an international firm, holds shares of this firm
and owns a diversified portfolio of banks.
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F.7 The Non-Financial Sector

Global household problem. The household enters the periods with a portfolio of dollar and
euro deposits, denoted by {Dt, D

∗
t }, holds shares of a global firm, Σt, and shares in a perfectly

diversified portfolio of global banks, ϑt. These shares entitle the household to the firm’s and bank’s
profits. The financial wealth available to the household (expressed in euros) is given by:

Ptn
h
t ≡

(
1 + idt

)
Dt + Tt + et

((
1 + i∗,dt

)
D∗t + T ∗t

)
+ Pt

(
qt + rht

)
Σt + Pt (Qt + divt)ϑt (F.48)

where Tt and T ∗t represent euro and dollar central bank transfers, qt is the price of the firm (in terms
of goods), rht is the profit of the international firm, and Qt is the price of the bank portfolio and divt
the dividend payout of banks.

In addition, the household supplies ht hours that are remunerated at zt euros per hour. The
household uses its wealth to purchase deposits, to buy shares, and to consume. There are three
types of consumption goods: dollar goods, denoted by c∗t , euro goods, denoted by ct, and a linear
good, denoted by cht . The household’s budget constraint is:

etP
∗
t c
∗
t + Ptct + Ptc

h
t +Dt+1 + etD

∗
t+1 + PtqtΣt+1 + PtQtϑt+1 = Ptn

h
t + zth. (F.49)

Both dollar and euro consumption are subject to deposit-in-advance (DIA) constraints:

ct ≤
(

1 + idt

) Dt

Pt
, (F.50)

and
c∗t ≤

(
1 + idt

) Dt

Pt
. (F.51)

The period utility is
U∗ (c∗t ) + U (ct) + cht −

h1+ν
t

1 + ν
,

where U∗ and U are concave utility functions over both goods and h1+ν
t / (1 + ν) is a labor dis-utility.

To simplify the algebra of this section, we assume that U∗c∗ (1) = Uc (1) = 1.
The household’s problem is:

V h
t (Dt, D

∗
t ,Σt, ϑt) = max

{ct,c∗t ,cht ,ht,Dt,D∗t+1,Σt+1,ϑt+1}
U∗ (c∗t ) + U (ct) + cht −

h1+ν
t

1 + ν
. . .

+ βV h
t+1

(
Dt+1, D

∗
t+1,Σt+1, ϑt+1

) (F.52)

subject to the budget constraint (F.49 and F.48) and the two DIA constraints (F.50-F.51).
Firm Problem. The firm produces all goods in the economy using the same production function

yt = At+1h
α
t .

The firm’s output is divided into:
c∗t + ct + cht = yt. (F.53)
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The firm revenues come from selling goods in the dollar, euro, and linear good markets:

etP
∗
t c
∗
t + Ptct + Ptc

h
t = Ptyt.

To produce positive amounts of all goods, the firm must be indifferent between selling in either
market. Hence, the law of one price will hold in an equilibrium with positive consumption of all
goods—the Inada conditions guarantee this is the case.

To maximize profits, the firm chooses borrowed funds Bd
t+1 and labor ht. The demand for

loansemerges from a working capital constraint: ztht ≤ Bd
t+1. The firm saves in deposits whatever

borrowings it doesn’t spend in wages.
The firm’s problem is given by:

Pt+1r
h
t+1 = max

Bdt+1≥0,ht≥0
Pt+1At+1h

α
t −

(
1 + ibt+1

)
Bd
t+1 +

(
1 + idt+1

)(
Bd
t+1 − ztht

)
= max

Bdt+1≥0,ht≥0
Pt+1At+1h

α
t −

(
1 + ibt+1

)
ztht −

(
ibt+1 − idt+1

)(
Bd
t+1 − ztht

)
.(F.54)

Equilibrium. In the body of the paper we characterized the equilibrium in loan and deposit
markets, taking as given the loan demand and deposit supply schedules, and the transfers rules. In
addition to these financial markets, the non-financial sector features a labor market, firm shares
market, bank shares market, and the three goods markets. Next, we derive the loan demand and
deposit supply schedules and comment on how once these asset markets clear, all other markets
clear.

F.8 Derivation of Deposit Supply and Loan Demand

Step 1 - deposit demand. We clear the linear good, cht , from the household’s budget constraint:

cht =
Ptn

h + zth−
(
etP

∗
t c
∗ + Ptc+Dt+1 + etD

∗
t+1 + Pt (rt + qt) Σt + Pt (Qt + divt)ϑt

)
Pt

= nh +
zt
Pt
ht −

(
c∗t + ct + (rt + qt) Σt + (Qt + divt)ϑt +

Dt+1

Pt
+
D∗t+1

P ∗t

)
. (F.55)

where the second line uses the law of one price.
Substituting (F.55) into the objective of the household’s problem (F.52) we obtain:

V h
t (Dt, D

∗
t ,Σt, ϑt) = nht + max

{ct,c∗t ,ht,Dt,D∗t+1,Σt+1,ϑt+1}
U∗ (c∗t ) + U (ct)−

h1+ν
t

1 + ν
. . .

+
zt
Pt
ht −

(
c∗t + ct + (rt + qt) Σt + (Qt + divt)ϑt +

Dt+1

Pt
+
D∗t+1

P ∗t

)
. . .

+βV h
t+1 (Dt+1, Dt+1,Σt+1, ϑt+1)

subject to the two DIA constraints (F.50-F.51).
We proceed to obtain the deposit supply.
Since {Dt+1, D

∗
t+1

} enter symmetrically, we derive the deposit supply only for one currency.
We take the first-order condition with respect to ct and notice that if the DIA constraint does not
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bind, Uc (c) = 1. In turn, if the deposit in advance constraint indeed binds, then:

c =
(

1 + idt

) Dt

Pt
=

(
1 + idt

)
Pt/Pt−1

Dt

Pt−1
= Rdt

Dt

Pt−1
.

Thus, we can combine both cases, with and without the binding DIA constraint, to write down the
optimal consumption rule:

c = min

{
(Uc)

−1 (1) , Rdt ·
Dt

Pt−1

}
. (F.56)

By analogy:
c∗ = min

{
(U∗c∗)

−1 (1) , Rd,∗t ·
D∗t
P ∗t−1

}
.

It is convenient to treat c and c∗ directly as functions of D
Pt−1

and D∗
P ∗t−1

in the next step.

Step 2 - deposit supply schedules. We replace the optimal euro and dollar consumption rules
into the objective. We have:

V h
t (Dt, D

∗
t ,Σt, ϑt) = nh + max

{ct,c∗t ,ht,Dt,D∗t+1,Σt+1,ϑt+1}
U∗
(

min

{
(U∗c∗)

−1 (1) , Rd,∗t ·
D∗

P ∗t−1

})
. . .

+ U

(
min

{
(Uc)

−1 (1) , Rdt ·
Dt

Pt−1

})
− h1+ν

1 + ν
. . .

+ nh +
zt
Pt
h−min

{
(U∗c∗)

−1 (1) , Rd,∗t ·
D∗t
P ∗t−1

}
. . .

− min

{
(Uc)

−1 (1) , Rdt ·
Dt

Pt−1

}
...

−
(

(rt + qt) Σt + (Qt + divt)ϑt +
Dt+1

Pt
+
D∗t+1

P ∗t

)
. . .

+ βV h
t+1 (Dt+1, Dt+1,Σt+1, ϑt+1) . (F.57)

Next, we the derive deposit demand: We take the first-order conditions with respect to Dt+1/Pt to
obtain:

1 = β
∂V h

t+1

∂ (Dt+1/Pt)
. (F.58)

Next, we derive the envelope condition. We have two cases.
Case 1: binding DIA constraint the following period. For the case where

Rdt ·Dt/Pt−1 < 1

we have from (F.57) that:

∂V h
t

∂ (Dt/Pt−1)
= UcR

d
t −Rdt +Rdt = UcR

d
t .
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Case 1: non-binding DIA constraint the following period. For the case where Rdt−1
D
Pt−1

≥ 1, we
have from (F.57) that

∂V h
t

∂ (Dt/Pt−1)
= Rdt .

Thus, combining the two envelope conditions we obtain:

∂V h
t

∂ (Dt/Pt−1)
=

{
Uc
(
Rdt ·Dt/Pt−1

)
Rdt for Rdt ·Dt/Pt−1 < 1

Rdt otherwise. (F.59)

We shift (F.59) one period forward and substitute in (F.58) in the left-hand side to obtain:

1

β
=

{
Uc
(
Rdt+1 ·Dt+1/Pt

)
Rdt+1 Rdt+1 ·Dt/Pt−1 < 1

Rdt+1 otherwise.

In the body of the paper, using the banks’ problem, we show that Rdt+1 < Rb = 1/β. Thus, the
only relevant portion to determine the demand condition is the one where there’s no satiation of
deposits. We hence, will only use this portion.

We now adopt power utility. Assume that U = c1−γ/ (1− γ) and U∗ = (c∗)1−γ∗ / (1− γ∗). Then,
1

β
=
(
Rdt+1 ·Dt+1/Pt

)−γ
Rdt+1.

We clear D/Pt to obtain the euro deposit supply schedule:

Dt+1/Pt = β1/γ
(
Rdt+1

) 1−γ
γ
.

By analogy, we have the dollar supply schedule:

D∗t+1/P
∗
t = β1/γ∗

(
R∗,dt+1

) 1−γ∗
γ∗

.

More generically, following the same states, if we introduce preference shocks to the utility
specifications, as follows:

Ut = (c/xt)
1−γ / (1− γ) and U∗t = (c∗/x∗t )

1−γ∗ / (1− γ∗) ,

the demand schedules generalize to:

Dt+1/Pt = xtβ
1/γ
(
Rdt

) 1−γx
γx

.

By analogy, we have that
D∗t+1/P

∗
t = x∗tβ

1/γ
(
Rdt

) 1−γx
γx

.

We obtain this conditions following exactly the same steps.
All in all, the demand schedules are akin to those in the body of the paper, where the reduced
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form coefficients are given by:

Θd
t = xtβ

1/γd and εd =
1

γd
− 1,

and
Θ∗,dt = x∗tβ

1/γ∗,d and ε∗,d =
1

γ∗,d
− 1.

Next, we describe the labor supply schedule.
Step 3 - labor supply. The first-order condition with respect to h in the household’s problem
yields a labor supply that only depends on the real wage:

hνt = zt/Pt. (F.60)
Next, we move to the firm’s problem to obtain the labor demand.
Step 4 - labor demand. Since from the bank’s problem, it will be the case that ibt+1 > idt+1, then
the working capital constraint in (F.54) is binding, ztht = Bd

t+1. Thus, the firm’s objective is to

max
ht≥0

Pt+1At+1h
α
t −

(
1 + ibt+1

)
ztht.

The first-order condition for labor ht yields:

Pt+1αAt+1h
α
t =

(
1 + ibt+1

)
ztht.

Dividing both sides by Pt, we obtain

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

) zt
Pt
ht. (F.61)

Step 5 - loan demand. Next, we use the labor supply (F.60) and labor demand (F.61), to solve for
labor as a function of the loans rate:

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

)
hν+1
t → Rbt =

αAt+1h
α
t

hν+1
t

. (F.62)

Since the working capital constraint binds:

Bd
t+1

Pt
= ht

ztht
Pt

= hν+1
t → ht =

(
Bd
t+1

Pt

) 1
ν+1

. (F.63)

Thus, we can combine (F.62) and (F.63) to obtain the loans demand:

Rbt = αAt+1

(
Bd
t+1

Pt

)−1(
Bd
t+1

Pt

) α
ν+1

→ Bd
t+1

Pt
= Θt

(
Rbt+1

)εb
, (F.64)

where the reduced form coefficients of the loans demand are:

Θb
t = (αAt+1)−ε

b and εb =

(
ν + 1

α− (ν + 1)

)
.
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Step 6 - output, firm value and bank values. We replace the loans demand (F.64) into (F.63) to
obtain the equilibrium labor as a function of the equilibrium loans rate:

ht =

(
1

αAt+1

) 1
α−(ν+1) (

Rbt+1

) 1
α−(ν+1)

.

We replace (F.63) into the production function to obtain:

yt+1 = At+1

(
1

αAt+1

) α
α−(ν+1) (

Rbt+1

) α
α−(ν+1) → yt+1 =

(
1

α

) α
α−(ν+1)

A
(ν+1)
ν+1−α
t+1

(
Rbt+1

) α
α−(ν+1) ·

The profit of the international firm is given by:

rht+1 = yt+1 −Rbt+1Bt+1 → rht+1 = A
(ν+1)
ν+1−α
t+1

(
α
− α
α−(ν+1) − α−

ν+1
α−(ν+1)

)
·
(
Rbt+1

) α
α−(ν+1)

.

The price of the firm is given by the first-order condition with respect to Σ. In that case, qt must
satisfy:

qt = β
(
rht+1 + qt+1

)
→ qt =

∑
τ≥1

βτ
(
rht+τ

)
.

With this, we conclude that output, hours, and the firm price are decreasing in current (and future)
loans rate.

Finally, consider the price of the bank’s shares. By the same token,

Qt = β (divt +Qt+1) ,

Multiply both sides by 1/β and recall that ϑt = 1. Thus, we have:

1

β
Qt =

(
divt + β

1

β
Qt+1

)
.

By change of variables let vt ≡ 1
βQt. Therefore, the value of the firm is given by

vt = divt + βvt+1.

Solving this condition from time zero implies that:

v0 =
∑
t≥0

βtdivt.

Thus, the bank’s objective in the body of the paper is consistent with maximizing the bank’s value.
Remark. We priced the firms and banks so that they are held in equilibrium by households. Thus,
the shares markets clear. Note that throughout the proof we use the labor market-clearing condition,
(F.62). Hence, the labor market clears. Since in the body of the paper we deal with clearing in the
loans and deposit markets, by Walras’s law, this implies clearing in the three goods markets.

All in all, the equilibrium in the banking block is an autonomous system. As long as the
loan and deposit markets clear, we have clearing in the non-financial sector: Once we compute
equilibria taking the schedules as exogenous in the bank’s problem, we obtain output and household
consumption from the equilibrium loan and deposit rates.
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Finally, we should note that in presence of aggregate risk (inflation risk in particular), the
deposit demand schedules will feature a risk premium that we are not considering in the derivation.
We ignore this terms.
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G Computational Algorithms

G.1 Preliminaries
Here we provide some intermediate results that we use to prove the propositions.

Recall that the liquidity ratio is denoted byµ ≡ m/d and θ = S−/S+ whereS− = −
´

min {s, 0} dΦ (ω),
S+ =

´
max {s, 0} dΦ (ω) and s = m+ ωd. Then,

θ =−
´
{s<0} s · dΦ (ω;σ)´
{s>0} s · dΦ (ω;σ)

,

=−
mΦ ({s < 0} ;σ) + d

´
{s<0} ω · dΦ (ω;σ)

m (1− Φ ({s > 0} ;σ)) + d
´
{s≥0} ω · dΦ (ω;σ)

.

Note that s < 0 occurs when ω < −µ. Therefore, we express the interbank market tightness as:

θ =−
´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

. (G.1)

With abuse of notation, define θ (µ, σ) as the function that maps µ and σ into a value of θ (thus, in
equilibrium, θ = θ (µ, σ)). We have the following Lemma:

Lemma G.1. Interbank market tightness is decreasing in the liquidity ratio. That is, dθdµ < 0. Moreover,
θ ∈ [0, 1].

Proof. From (G.1), using Leibniz rule, we obtain

dθ

dµ
= θ

(
Φ (−µ;σ)´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
− 1− Φ (−µ;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
. (G.2)

By definition of conditional expectation:

E [µ+ ω|ω < −µ] =

ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ) /Φ (−µ;σ) ,

and
E [µ+ ω|ω > −µ] =

ˆ ∞
−µ

(µ+ ω) · dΦ (ω;σ) / (1− Φ (−µ;σ)) .

Replacing these definitions into (G.2), we obtain:

dθ

dµ
= θ ·

(
1

E [µ+ ω|ω < −µ]
− 1

E [µ+ ω|ω > −µ]

)
< 0,

where the inequality follows because E [µ+ ω|ω < −µ] < 0 and E [µ+ ω|ω > −µ] > 0.
Finally, the bounds on θ follow because limµ→∞ θ = 0 and θ = 1 if µ = 0.

Next, we obtain the derivative of interbank market tightness with respect to σ.

Lemma G.2. Under Assumption 1, we have that ∂θ
∂σ > 0.
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Proof. Passing the differential operator inside the integrals in the numerators, we have that:

∂θ

∂σ
= θ ·

( ´ −µ
−∞ (µ+ ω)φσdω´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
−

´∞
−µ (µ+ ω)φσdω´∞

−µ (µ+ ω) · dΦ (ω;σ)

)

= θ ·
(
∂

∂σ

[
log

(´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

)])
.

Since the withdrawal shock is zero mean,
ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ) +

ˆ ∞
−µ

(µ+ ω) · dΦ (ω;σ) = µ.

Therefore, identity this condition into the derivative just above we obtain:

∂θ

∂σ
= log

(
µ−
´∞
−µ (µ+ ω) · dΦ (ω;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
.

Therefore, ∂θ∂σ > 0 holds if and only if:

∂

∂σ

[ˆ −µ
−∞

(µ+ ω) · dΦ (ω;σ)

]
< 0.

Using the integration by parts formula:
ˆ −µ
−∞

(µ+ ω)φσ (ω;σ) dω = (µ+ ω) Φσ (ω;σ) |−µ−∞ −
ˆ −µ
−∞

Φσ (ω;σ) dω

= −
ˆ −µ
−∞

Φσ (ω;σ) dω < 0

where the last equality follows from limω→−∞ ((µ+ ω)) Φσ (ω;σ) = ∂
∂σ [limω→−∞ ((µ+ ω)) Φ (ω;σ)] =

0 and the strict inequality follows from Assumption 1. We conclude that, ∂θ∂σ > 0.

We will also use the results from the following Lemma.

Lemma G.3. The liquidity coefficients have the following derivatives:

∂χ+

∂µ
=
∂χ+

∂θ

∂θ

∂µ
< 0 and ∂χ−

∂µ
=
∂χ−

∂θ

∂θ

∂µ
< 0, (G.3)

∂χ+

∂σ
=
∂χ+

∂θ

∂θ

∂σ
> 0 and ∂χ−

∂µ
=
∂χ−

∂θ

∂θ

∂σ
> 0, (G.4)

∂χ̄+

∂Pt
=
χ̄+

Pt
and ∂χ̄−(θ)

∂Pt
=
χ̄−

Pt
. (G.5)

Proof. Notice first that ∂χ+

∂θ > 0 and ∂χ−
∂θ > 0 is an immediate result from their definitions in

equations (D.2). Applying Lemmas G.1 and G.2, we obtain respectively (G.3) and (G.4).
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In addition, we can express (D.2) as

χ̄+ =
Pt
Pt+1

(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − θ
θ̄ − 1

)
, χ̄− =

Pt
Pt+1

(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − 1

θ̄ − 1

)
(G.6)

Equation (G.5) follows immediately.

It is useful to define L(µ, σ, P ) to be the bond liquidity premium as a function of the liquidity
ratio, the index σ and the current price level. That is,

L(µ, σ, P ) = (1− Φ(−µ, σ)) · χ̄+ (θ(µ, σ), P ) + Φ(−µ, σ) · χ̄− (θ(µ, σ), P ) (G.7)

In equilibrium L(µ, σ, P ) = Rb −Rm. We have the following result.

Lemma G.4. The liquidity bond premium is decreasing in the liquidity ratio and increasing in volatility.
That is, Lµ < 0 and Lσ > 0. In addition, LP = −L/P .

Proof. From (G.7), differentiating Lwith respect to µ:

Lµ =
[
(1− Φ(−µ, σ)) · χ+

θ + Φ(−µ, σ) · χ−θ
]
−
(
χ̄− − χ̄+

)
φ (−µ, σ) . (G.8)

Using that ∂θ
∂µ < 0 from Lemma G.1 and that χ̄− > χ̄+, we arrive at Lµ < 0.

From (G.7), differentiating Lwith respect to σ yields:

LPσ =
∂θ

∂σ

[
(1− Φ(−µ, σ)) · χ+

θ + Φ(−µ, σ) · χ−θ
]

+
(
χ̄− − χ̄+

)
Φσ (−µ, σ) . (G.9)

Using that ∂θ
∂σ > 0 from Lemma G.2 and that χ̄− > χ̄+, we conclude that Lσ > 0. Finally, the

expression for LP follows directly from differentiating Lwith respect to P in (G.5).

We now proceed with the proofs and use that these properties apply for both euros and dollars.

G.2 Proof of Proposition 1
Proof. Part i). By definition, the liquidity ratio µ∗ is given by

µ∗(P ∗, D∗) =
M∗/P ∗

D∗
(G.10)

where we made explicit the dependence of µ∗ on (P ∗, D∗). Using that M∗ is exogenously given,
totally differentiating (G.10) yields

dµ∗ = −µ∗
(
dP ∗

P ∗
+
dD∗

D∗

)
. (G.11)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, D∗), P ∗). (G.12)
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Totally differentiating (G.12) with respect to P ∗ and D∗, and using (G.11), we obtain:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗µ∗

[
µ

(
dP ∗

P ∗
+
dD∗

D∗

)]
+ L∗PdP ∗ (G.13)

where E[P ∗(X ′)] remains constant because the shock is i.i.d. and the loan rate is constant at
Rb = 1/β.

Using L∗P ∗ = L∗
P ∗ from Lemma G.4, Rb = Rm,∗ + L∗ and replacing in (G.13), we arrive to

d logP ∗

d logD∗
=

L∗µ∗µ∗
Rb − L∗µ∗µ∗

∈ (−1, 0) . (G.14)

The bounds follows immediately because L∗µ < 0 as established in Lemma G.4 and from Rb > 0.

Notice also that the euro bond premium remains constant. To see this, we can replace µ =
(M/P )/D in (17) and use (G.1) to obtain

Rb − (1 + im)
P

E[P (X ′)]
=

(
1− Φ

(
−M/P

D

))
χ̄+(θ((M/P )/D, σ))+

Φ

(
−M/P

D

)
χ̄−(θ((M/P )/D, σ)). (G.15)

From (G.15), it follows that P must be constant and thus µ and L are also constant. As a result,
dL∗ = dDLP , dL∗µ∗ = dDLPµ∗ .

By the law of one price and using that P remains constant, we then have d log e
d logD∗ = − L∗µµ∗

Rb−L∗µµ∗
which implies an appreciation of the dollar. Finally, we can rewrite (G.13) as R̄m,∗ (d log e) = dL∗ =
dDLP .

Part ii). When the shock is permanent, expected inflation remains constant. Moreover, given
that nominal policy rates and expected inflation are constant, we have from (18) that L∗ is constant.
Hence, DLP is constant. Furthermore, the fact that L∗ is constant, implies that µ must also be
constant. Thus, using that (G.11) and that M∗ is constant, we have from the law of one price that:

d log e

d logD∗
= −d logP ∗

d logD∗
= 1.

G.3 Proof of Proposition 2
Proof. Part i). Totally differentiating (G.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (G.16)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, σ∗), P ∗). (G.17)
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Totally differentiating (G.17) with respect to P ∗ and σ∗ and using (G.16) yields:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗µ

[
µ

(
dP ∗

P ∗

)]
+ L∗σ∗dσ∗ + L∗PdP ∗ (G.18)

where we used that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗P ∗ = L∗

P ∗ from Lemma G.4, Rb = Rm,∗ + L∗, and replacing in (G.16) , we obtain

d logP ∗

d log σ∗
= − L∗σ∗σ

Rb − L∗µµ∗
< 0 (G.19)

where the sign follows from Lemma G.4. Notice also that the euro bond premium remains constant,
and so do P , µ and L, as demonstrated in the proof of Proposition 1.

By the law of one price, and using that P remains constant, we then have d log e
d logD∗ = L∗σσ∗

Rb−L∗µµ∗
which implies an appreciation of the dollar. Finally, we can rewrite (G.18) as R̄m,∗ (d log e) = dL∗ =
dDLP .

Part ii). When the shock is permanent, expected inflation is constant. Given that nominal policy
rates are constant, L∗ and DLP are constant. Thus,

L∗µ∗dµ∗ + L∗σ∗dσ∗ = 0 (G.20)
and so

d logµ∗

d log σ∗
= −L

∗
σ∗σ
∗

L∗µ∗µ∗
> 0 (G.21)

where the sign follows from L∗µ∗ < 0 and L∗σ∗ > 0 from Lemma G.4. Using that d logµ∗ = −d logP ∗,
from the law of one price, d log e∗

d log σ∗ = d log µ∗
d log σ∗ .

G.4 Approximation to Mean Reverting Shocks
Proof. We now derive approximate analogues to propositions 1 and 2 for cases where shocks are
mean reverting. In particular, shocks follow a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt . (G.22)

We have the following result. We use xss to refer to the deterministic steady-state value of any
variable x. The proof extends the results in Propositions 1 and 2. We first show this intermediate
result. In the model, prices are a function of the aggregate state,X . Thus, an equilibrium will feature
a function P ∗ (Xt) such that P ∗t = P ∗ (Xt). Then, near the steady state, using a Taylor expansion of
first-order with respect to the variable x. We have that:

logP ∗t ≈ logP ∗ss +
P ∗x (xss)xss

P ∗ss

xt − xss
xss

.

Thus, we have that for small deviations around the steady state:

d logP ∗t ≈
P ∗x (xss)xss

P ∗ss
d log xt. (G.23)
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Shifting this condition forward:

d logP ∗t+1 ≈
P ∗x (xss)xss

P ∗ss
d log xt+1

Taking expectations:
E
[
d logP ∗t+1

]
≈ P ∗x (xss)xss

P ∗ss
ρxd log xt. (G.24)

Dividing the left-hand side of (G.24) by (G.23),

E
[
d logP ∗t+1

]
d logP ∗t

= ρxd log xt. (G.25)

Next, we proof the main items of the propositions. The proof uses that for either currency:

∂χ̄+

∂Pt+1
= − χ̄+

E [Pt+1]
, and ∂χ̄−(θ)

∂Pt+1
= − χ̄−

E [Pt+1]
. (G.26)

Hence:
L∗P ∗t+1

= − L
∗

P ∗t+1

Recall that the dollar liquidity premium can be expressed as

Rb − (1 + im,∗)
P ∗t

E
[
P ∗t+1

] = L∗(µ∗(P ∗, D∗), P ∗t , P ∗t+1), (G.27)

where we now make explicit that L∗ depends on both Pt and Pt+1.
Part (i). We present here the proof for item (i). Totally differentiating (G.27) with respect to Pt,

Pt+1, and D∗ and using (G.11) near the steady state, we obtain

−Rm,∗
(
dP ∗t
P ∗t

)
+Rm,∗

E
[
dP ∗t+1

]
E
[
P ∗t+1

] = −L∗µ∗µ∗
(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
+ L∗P ∗t dP

∗
t −L∗P ∗t+1

E
[
dP ∗t+1

]
. (G.28)

Then, collecting terms:

− (Rm,∗ + L∗)
(

1− E
[
d logP ∗t+1

]
d logP ∗t

)
d logP ∗t = −L∗µ∗µ∗

(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
. (G.29)

Substituting Rb = Rm,∗ + L∗ and (G.25), we obtain:

Rb
(

1− ρD∗
)
d logP ∗t ≈ L∗µ∗µ∗

(
dP ∗t
P ∗t

+
dD∗t
D∗t

)
.

Thus, we obtain
d logP ∗

d logD∗
≈

L∗µ∗µ∗
(1− ρD∗)Rb − L∗µ∗µ∗

< 0.
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Then, it follows from the law of one price and the differential form of µ that

εeD∗ ≡
d log e

d logD∗
≈ −

L∗µ∗µ∗
(1− ρD∗)Rb − L∗µ∗µ∗

∈ (0, 1) ,

and
εeµ∗ ≡

d logµ

d logD∗
≈ − (1− ρD∗)Rb

(1− ρD∗)Rb − L∗µ∗µ∗
∈ (−1, 0) .

Part (ii). We present here the proof for item (ii). It follows the same steps as in Part (i): We
totally differentiate (G.27) with respect to Pt, Pt+1, and σ∗ and using (G.11) for the case where
dD∗ = 0. We obtain:

−Rm,∗
(
dP ∗t
P ∗t

)
+Rm,∗

E
[
dP ∗t+1

]
E
[
P ∗t+1

] = L∗σ∗dσ∗−L∗µ∗µ∗
(
dP ∗t
P ∗t

)
+L∗P ∗t dP

∗
t −L∗P ∗t+1

E
[
dP ∗t+1

]
. (G.30)

Collecting terms and using the same identities that we use to derive G.29, we arrive at:(
Rb
(

1− ρσ∗
)
− L∗µ∗µ∗

)
d logP ∗t ≈ −L∗σ∗dσ∗.

Therefore, we obtain:
d logP ∗

d log σ∗
≈ −L∗σ∗dσ∗

(1− ρσ∗)Rb − L∗µ∗µ∗
< 0.

Then using that µ∗ = M∗/ (P ∗D∗) and that e = P/P ∗ and that P,M∗ andD∗ are constant, we arrive
at:

d logµ∗

d log σ∗
≈ d log e

d log σ∗
= −d logP ∗

d log σ∗
=

L∗σ∗dσ∗
(1− ρσ∗)Rb − L∗µ∗µ∗

> 0.

G.5 Proof of Proposition 3
We again consider that any shock x follows a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt .

We consider only shocks to dollar funding risk and the dollar funding scale and that V ar (εxt ) = 1
for all shocks. Thus

V ar (xt) =
(Σx)2(

1− (ρx)2
) . (G.31)

Consider a univariate linear regression of ∆ log e∗ against ∆ logµ∗ where ∆xt = xt − xt−1. The
regression coefficient is a function of two moments:

γe
∗
µ∗ =

CoV (∆ log e∗,∆ logµ∗)
V ar (∆ logµ∗)

. (G.32)

Consider an endogenous variable Yt in the model. An equilibrium will feature a function Y (Xt)
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such that Yt = Y (Xt), where Xt is the exogenous state. Then, using a first-order Taylor expansion:

log Yt ≈ log Yss +
∑
x∈X

Yx (xss) · xss
Yss

xt − xss
xss

for x ∈ X.

Therefore, we have that:

∆ log Yt ≈
∑
x∈X

Yx (xss) · xss
Yss

(
xt − xss
xss

− xt−1 − xss
xss

)
.

Near a steady state:
xt − xss
xss

− xt−1 − xss
xss

≈ ∆ log (xt) = ρx · (log (xt−1)− log (xss)) + Σxεxt .

Using this identity,

∆ log Yt ≈
∑

x∈X
Yx(xss)·xss

Yss
(ρx · (log (xt−1)− log (xss)) + Σxεxt ) .

Then, for small shocks the log-deviation from steady-state is approximately the elasticity near steady
state.

Yx (x) · x
Yss

= εYx .

Hence, we have that ∆ log e∗t and ∆ logµ∗t follow:

∆ log e∗t = εe
∗
σ∗

(
ρσ
∗ ·
(
log
(
σ∗t−1

)
− log (σ∗ss)

)
+ Σσ∗εσ

∗
t

)
...

+εe
∗
D∗

(
ρD
∗ ·
(
log
(
D∗t−1

)
− log (D∗ss)

)
+ ΣD∗εD

∗
t

)
. (G.33)

Likewise, for the dollar liquidity ratio:

∆ logµ∗t = εµ
∗
σ∗

(
ρσ
∗ ·
(
log
(
σ∗t−1

)
− log (σ∗ss)

)
+ Σσ∗εσ

∗
t

)
...

+εµ
∗
D∗

(
ρD
∗ ·
(
log
(
D∗t−1

)
− log (D∗ss)

)
+ ΣD∗εD

∗
t

)
. (G.34)

From, (G.34) variance of the change in the liquidity ratio is:

V ar (∆ logµ∗) =
(
εµ
∗
σ∗

)2
((

ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+
(
εµ
∗
D∗

)2
((

ρD
∗
)2
V ar (D∗) +

(
ΣD∗

)2
)2

.

Substituting (G.31) into the equation above:

V ar (∆ logµ∗) =
(
εµ
∗
σ∗

)2

(ρσ∗)2
(
Σσ∗

)2(
1− (ρσ∗)2

) +
(

Σσ∗
)2

+
(
εµ
∗
D∗

)2

(ρD∗)2
(
ΣD∗

)2(
1− (ρD∗)2

) +
(

ΣD∗
)2


=

(
εµ
∗
σ∗

)2
(
Σσ∗

)2(
1− (ρσ∗)2

) +
(
εD
∗

σ∗

)2
(
ΣD∗

)2(
1− (ρD∗)2

) .
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Provided that the shocks to σ∗ and D∗ are orthogonal, from (G.33) and (G.34), we have that
following covariance between the change in the exchange rate and the change in the dollar liquidity
ratio:

Cov(∆ log e∗,∆ logµ∗) ≈ εe
∗
σ∗ · εµ

∗
σ∗

((
ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+ εe
∗
D∗ · εµ

∗
D∗

((
ρD
∗
)2
V ar (D∗) + ΣD∗

)2

= εe
∗
σ∗ · εµ

∗
σ∗

((
ρσ
∗
)2
V ar (σ∗) +

(
Σσ∗

)2
)

+ εe
∗
D∗ · εµ

∗
D∗

((
ρD
∗
)2
V ar (D∗) + ΣD∗

)2

= εe
∗
σ∗ · εµ

∗
σ∗

(
Σσ∗

)2(
1− (ρσ∗)2

) + εe
∗
D∗ · εµ

∗
D∗

(
ΣD∗

)2(
1− (ρD∗)2

) .
Thus, substituting the approximations to V ar (∆ logµ∗) and Cov(∆ log e∗,∆ logµ∗) back into

(G.32), we obtain that the univariate regression coefficient is approximately:

βe
∗
µ∗ ≈

εe
∗
σ∗ · εµ

∗
σ∗ · V ar (σ∗) + εe

∗
D∗ · ε

µ∗
D∗V ar (D∗)(

εµ
∗
σ∗

)2
V ar (σ∗) +

(
εD
∗

σ∗
)2
V ar (D∗)

.

=
εe
∗
σ∗

εµ
∗
σ∗
·wσ∗ +

εe
∗
D∗

εµ
∗
D∗

wD∗ .

where:

wσ∗ =

(
εµ
∗
σ∗

)2
(

Σσ
∗)2

1−(ρσ∗)
2(

εµ
∗
σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
εµ
∗
D∗

)2 (ΣD∗)
2(

1−(ρD∗)
2
) =

(
εµ
∗
σ∗Σ

σ∗
)2 (

1−
(
ρD
∗)2)(

εµ
∗
σ∗Σ

σ∗
)2 (

1− (ρD∗)2
)

+
(
εµ
∗
D∗Σ

D∗
)2 (

1− (ρσ∗)2
) .

and

wD∗ =

(
εµ
∗
D∗

)2
(

ΣD
∗)2(

1−(ρD∗)
2
)

(
εµ
∗
σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
εD
∗

σ∗
)2 (ΣD∗)

2(
1−(ρD∗)

2
) =

(
εµ
∗
σ∗Σ

σ∗
)2 (

1−
(
ρσ
∗)2)(

εµ
∗
σ∗Σ

σ∗
)2 (

1− (ρD∗)2
)

+
(
εµ
∗
D∗Σ

D∗
)2 (

1− (ρσ∗)2
) .

G.6 Proof of Proposition (4)
Proof. Part i) Totally differentiating (G.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (G.35)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗), P ∗) (G.36)
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Totally differentiating (G.36) with respect to P ∗ and (1 + im,∗), and using (G.35), we obtain

−Rm,∗
(
dP ∗

P ∗

)
− P ∗

E[P ∗(X ′)]
d (1 + im,∗) = −L∗µ∗µ∗

(
dP ∗

P ∗

)
+ L∗P ∗dP ∗ (G.37)

where notice that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗P ∗ = L∗

P ∗ from Lemma G.4, Rb = Rm,∗ + L∗, and R̄m = P ∗(1 + im,∗)/E[P ∗(X ′)], and
replacing these equalities in (G.37), we obtain:

d logP ∗

d log (1 + im,∗)
= − R̄m

Rb − L∗µ∗µ∗
∈ (−1, 0) (G.38)

where the sign follows from Lemma G.4. The upper bound follows because Rb > R̄m.
Notice also that the euro bond premium remains constant, and so doP , µ andL, as demonstrated

in the proof of Proposition 1. This implies that dL∗ = dDLP , dL∗µ∗ = dDLPµ∗ .
By the law of one price, we then have d log e∗

d log(1+im,∗) = R̄m

Rb−L∗µµ∗
which implies an appreciation of

the dollar.
Finally, we can rewrite (G.37) as

Rm,∗ (d log e− d log (1 + im,∗)) = dL∗ = dDLP < 0 (G.39)

where the sign follows from the bounds on (G.38).
Part ii). When the shock is permanent, expected inflation is constant. From (18), it follows that

the increase in 1 + im,∗ leads to a decrease in L∗ and a reduction in DLP. Total differentiation of
(G.36) with respect to 1 + im,∗ and µ∗ yields

− R̄m,∗d log(1 + im,∗) = L∗µµ∗d logµ∗, (G.40)
and thus

d logµ∗

d log(1 + im,∗)
= − R̄m,∗

L∗µ∗µ∗
> 0. (G.41)

where the sign follows from Lemma G.4. Using that d logµ∗ = −d logP ∗ when M∗ and D∗ are
constant, we have from the law of one price that d log e∗

d log 1+im,∗ = R̄m,∗
−L∗µµ∗ . Finally

dDLP = −R̄m,∗d log(1 + im,∗)

.

Proofs of Proposition 5 (Open-Market Operations)

Preliminary Observations. We make two assumptions: first, deposits and securities are perfect
substitutes, but the demand for the sum of deposits and securities is perfectly inelastic. Second, the
supply of securities is fixed. Let SH,∗ indicate the household holding of dollar securities and SG,∗
the central bank’s holdings of dollar securities. Thus, we have SH,∗ + SG,∗ = S∗ where S∗ is a fixed
supply of securities.

Consider a purchase of securities with reserves. The central banks’ budget constraint in this
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case is modified to:

M∗t + T ∗t +W ∗t+1 +
(

1 + id,∗t
)
· P ∗t−1S

G,∗
t−1 = P ∗t · SG,∗t +M∗t−1(1 + im,∗t ) +W ∗t (1 + iw,∗t ).

As in earlier proofs, we avoid time subscripts. Consider a small change in the holdings of central
bank securities purchased with reserves. We obtain:

dM∗ = SG,∗dP ∗ + P ∗dSG,∗ = P ∗SG,∗
dP ∗

P ∗
+ P ∗SG,∗

dSG,∗

SG,∗
. (G.42)

Assuming that the central bank has a balance sheet such that Υ of its liabilities are backed with
securities,

Υ∗ =
P ∗SG,∗

M∗
,

we modify (G.42) to obtain:

dM∗

M∗
=
P ∗SG,∗

M

(
dP ∗

P ∗
+
dSG,∗

SG,∗

)
= Υ∗

(
dP ∗

P ∗
+
dSG,∗

SG,∗

)
.

Thus, expressed in logs, this condition is:

d logM∗ = Υ∗
(
d logP ∗ + d logSG,∗

)
. (G.43)

The equation accounts for the fact that the growth in the money supply needed to finance the
open-market operation has consider the change in the price level.

Next, since households are inelastic regarding the some of securities and deposits, it must be
that dD∗ = −dSH,∗. Since the supply of the security is fixed −dSH,∗ = dSG,∗. Hence,

dD∗ = dSG,∗.

Next, we express the change in the liquidity ratio in its differential form:

dµ∗ = µ∗
(
dM∗

M∗
−
(
dP ∗

P ∗
+
dD∗

D∗

))
,

= µ∗
(
dM∗

M∗
−
(
dP ∗

P ∗
+ µ∗Υ∗

dSG,∗

SG,∗

))
,

where the second line applies the definitions of µ∗ and Υ∗.
In log terms, the last equation is:

d logµ∗ =
(
d logM∗ −

(
d logP ∗ + Υ∗µ∗ · d logSG,∗

))
.

Substituting (G.43) we obtain:

d logµ∗ =
(
Υ∗
(
d logP ∗ + d logSG,∗

)
− d logP ∗ −Υ∗µ∗ · d logSG,∗

)
= − (1−Υ∗) d logP ∗ + Υ∗ (1− µ∗) · d logSG,∗. (G.44)
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Item (i). We now derive the main results. We follow the earlier proofs. Totally differentiating the
liquidity premium with respect to µ∗ and P ∗, we obtain:

R̄m,∗d logP ∗ + L∗d logP ∗ + L∗µ∗µ∗d logµ∗ = 0. (G.45)

Substituting (G.44) and collecting terms we obtain:(
R̄m,∗ + L∗ − (1−Υ∗)LP∗µ∗µ∗

)
d logP ∗ + L∗µ∗µ∗Υ∗ (1− µ∗) · d logSG,∗ = 0. (G.46)

Thus, we obtain:
d logP ∗

d logSG,∗
=
−LP∗µ∗µ∗ (1− µ∗) Υ∗

Rb − (1−Υ∗)LP∗µ∗µ∗
> 0.

If we substitute this expression in the left back into (G.44) we obtain:

d logµ∗

d logSG,∗
=

RbΥ∗ (1− µ∗)
Rb − (1−Υ∗)LP∗µ∗µ∗

> 0.

Finally, by the law of one price:

d log e = −d logP ∗ =
L∗µ∗µ∗ (1− µ∗) Υ∗

Rb − (1−Υ∗)L∗µ∗µ∗
< 0.

Finally, the excess-bond premium and the dollar liquidity premium is:

dL∗ = dDLP∗ = −R∗,md logP ∗ < 0.

Item (ii). If the shock is permanent expected inflation does not change. Since nominal rates are
fixed, we have that the dollar liquidity ratio must remain constant:

d logµ∗ = 0. (G.47)
Moreover, dBP∗ = dDLP∗ = 0. From (G.44)

d logP ∗

d logSG,∗
=

Υ∗

(1−Υ∗)
(1− µ∗) > 0·

By the law of one price then:

d log e

d logSG,∗
= − d logP ∗

d logSG,∗
= − Υ∗

(1−Υ∗)
(1− µ∗) .

Steady State: equilibrium conditions. We solve the steady-state of the model where n = 0
every period.30 Solving for steady-state equilibrium requires requires to solve for 11 variables,
three interest rates, {R∗,d, Rd, Rb}, three prices {P, P ∗, e} and five quantities {m∗,m, d, d∗, b∗}. We
summarize these conditions below and show that the system .

30When n > 0, Rb = 1/β so we drop one variable and the budget constraint.
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Prices given quantities are given by:

d∗ = Θ∗,d
(
R∗,d

)εd∗
(G.48)

d = Θd
(
Rd
)εd

(G.49)

and
b∗ = Θb

(
Rb
)εb

. (G.50)

The two prices are given by the equilibrium in the market for real dollar reserves,

m∗ =
M∗

P ∗
. (G.51)

and by the equilibrium in the market for real euro reserves is for euro reserves:

m =
M

P
. (G.52)

In turn, the exchange rate is obtained via the law of one price:

e = P/P ∗.

Finally, we have four first-order conditions and the budget constraint to pin down the quantities:
a) the dollar liquidity premium:

Rm,∗ + E [χ∗m∗ ] = Rm + E [χm]

b) the bond premium:

Rb = Rm,∗ + E [χ∗m∗ ] (G.53)

c-d) the two deposit premia

Rd,∗ + E [χ∗d∗ ] = Rm,∗ + E [χ∗m∗ ] (G.54)

and

Rd,∗ + E [χ∗d∗ ] = Rm,∗ + E [χ∗m∗ ] (G.55)

Finally, the budget constraint for n = 0 is:

b+m+m∗ = d+ d∗.

This is a system of 11 equations and 11 unknowns. Next, show how to solve the model in ratios.
Steady State: solving the model in ratios. Recall that liquidity ratios are given by:

µ ≡ m

d
and µ∗ ≡ m∗

d∗
.
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We define the ratio of real euro to dollar funding as:

υ ≡ d

d∗
.

Once we obtain {d∗, ν, µ, µ∗}, we obtain {m,m∗, d} from these three definitions.
We have shown that the interbank market tightness in euros and dollars are given by:

θ (µ) = max

{
−
´ −µ
−∞ (µ+ ω) · dΦ (ω)´∞
−µ (µ+ ω) · dΦ (ω)

, 0

}

and
θ∗ (µ∗) =

{
−
´ −µ∗
−∞ (µ∗ + ω) · dΦ∗ (ω∗)´∞
−µ∗ (µ+ ω) · dΦ∗ (ω∗)

, 0

}
.

Thus we have introduced three ratios. Notice that once we obtain {µ, µ∗}we obtain {d, d∗}. Once
we obtain υ, we have {e−1

}
.

Furthermore, the budget constraint written in ratios is:

b∗ = (υ (1− µ) + (1− µ∗)) d∗. (G.56)

We substitute out {Rb, Rd, R∗,d} and work directly with the market clearing conditions. We replace
b∗ from the budget constraint. If we substitute the ratios {µ∗, µ, υ, d∗} into the equilibrium conditions
and, thus only have one quantity variable d∗, and the rest of the system is expressed in ratios.
Steady State: autonomous sub-system. We solve for {µ∗, µ, υ, d∗} using:

1) Bond premium:

Θb ((υ (1− µ) + (1− µ∗)) d∗)εb = R∗,m + E [χm (µ∗)] . (G.57)

2) The dollar liquidity premium:

Rm + E [χm (µ)] = R∗,m + E [χm (µ∗)] .

3) The euro funding premium:

Θd (υd∗)−ε
d

+ E [χd (µ)] = R∗,m + E [χm (µ∗)] (G.58)

4) dollar funding premium:

Θ∗,d (d∗)−ε
d∗

+ E [χd∗ (µ∗)] = R∗,m + E [χm∗ (µ∗)] . (G.59)

These four equations provide us with a solution to {d∗, ν, µ, µ∗}.
Steady State: Solving the rest of the model. With the solution to {µ∗, µ, υ, d∗} we obtain
{m∗,m, d} using:

m = µd, m∗ = µ∗d∗, and d = νd∗.
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Then, we obtain the euro price from

P =
M

µυd∗
,

the dollar price from
P ∗ =

M∗

µ∗d∗
,

and the exchange rate from
e =

P

P ∗
.

G.7 Algorithm to obtain a Global Solution

Define X ∈ X = {1, 2, 3, . . . , N s} to be a finite set of states. We let X follow a Markov pro-
cess with transition matrix Q. Thus, X ′ ∼ Q (X). That is, at each period, X = {σ∗, σ, i∗,m, im,
M,M∗,Θd,Θ∗,d} are all, potentially, functions of the state X .

The algorithm proceeds as follows. We define a “greed” parameter ∆greed and a tolerance
parameter εtol, and construct a grid for X . We conjecture a price-level functions

{
p(0) (X) , p∗(0) (X)

}
which produces a price levels in both currencies as a function of the state. As an initial guess, we
use p(0) (X) = p∗ss, and p∗(0) (X) = p∗ss setting the exchange rate to its steady state level in all periods.
We proceed by iterations, setting a tolerance count tol to tol > 2 · εtol.

Outerloop 1: Iteration of price functions. We iterate price functions until they converge. Let n be
the n− th step of a given iteration. Given a p(n) (X) , p∗(n) (X), we produce a new price level
functions p(n+1) (X) , p∗(n+1) (X) if tol > εtol.

Innerloop 1: Solve for real policy rates. For each X in the grid for X , we solve for{
R̄m (X) , R̄∗,m (X) , R̄w (X) , R̄∗,w (X)

}
.

Let j be the j − th step of a given iteration. Conjecture values{
R̄m(0) (X) , R̄∗,m(0) (X) , R̄w(0) (X) , R̄∗,w(0) (X)

}
We use {R̄mss, R̄∗,mss , R̄wss, R̄

∗,w
ss

} as an initial guess. We then update{
R̄m(j) (X) , R̄∗,m(j) (X) , R̄w(j) (X) , R̄∗,w(j) (X)

}
until we obtain convergence:

2.a Given this guess, we solve for the liquidity ratios in Dollars and Euro {µ, µ∗, R̄d, R̄∗,d} as a
function of the state using:

R̄d +
1

2

(
χ+ (µ)− χ− (µ)

)
= R̄∗,d +

1

2

(
χ∗,+ (µ∗)− χ∗,− (µ∗)

)
R̄m +

1

2

(
χ+ (µ) + χ− (µ)

)
= R̄∗,m +

1

2

(
χ∗,+ (µ∗) + χ∗,− (µ∗)

)
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Θb ((υ (1− µ) + (1− µ∗)) d∗)εb = R̄∗,d +
1

2

(
χ+ (µ)− χ− (µ)

)

R̄m = R̄∗,d +
1

2

(
χ+ (µ)− χ− (µ)

)
− 1

2

(
χ+ (µ) + χ− (µ)

)
.

This step yields an update for {Rd (X) , R∗,d (X)
}.

2.b Given the solutions to {Rd (X) , R∗,d (X)
}, we solve {d∗, υ} using:

d∗ =

[
R̄∗,d

Θ∗,d

]1/εd∗

υ =

[
R̄d

Θd

]1/εd [
R̄∗,d

Θ∗,d

]1/εd∗

.

This step yields an update for {d∗ (X) , υ (X)}.

2.c Given {d∗ (X) , υ (X)}we solve for prices {p, p∗, e} using:

µυd∗ =
M

p

µ∗d∗ =
e

p
M∗

p∗ = e−1p.

2.d Finally, we update the real policy rates. For that we construct the expected inflation in each
currency:

E [π∗] =

∑
s′∈S Q (s′|s) p∗(n) (s)

p∗ (s)

and
E [π] =

∑
s′∈S Q (s′|s) p(n) (s)

p (s)
.

We then update the policy rates by:

R∗,a(j+1) =
(1 + i∗,a)
(1 + π∗)

for a ∈ {m,w}

and
Ra(j+1) =

(1 + ia)

(1 + π)
for a ∈ {m,w} .

2.e Repeat steps 2.a-2.d, unless{
Rm(j) (X) , R∗,m(j) (X) , Rw(j) (X) , R∗,w(j) (X)

}
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is close to {
Rm(j+1) (X) , R∗,m(j+1) (X) , Rw(j+1) (X) , R∗,w(j+1) (X)

}
.

If the real policy rates have converged, update prices according to

p∗(n+1) (X) = ∆greedp∗ +
(

1−∆greed
)
p∗(n) (X)

and
p(n+1) (X) = ∆greedp+

(
1−∆greed

)
p∗(n) (X)

and proceed back to the outer-loop.
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