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Abstract

We append the expectation of a monetary-fiscal reform into a standard new-Keynesian model.

Under the reform, monetary policy is temporarily obliged to provoke inflation to aid the govern-

ment make its debt sustainable. After the reform, debt and inflation are stabilized again. We study

the fight against inflation prior to the realization of an expected reform. Temporary increases in

nominal rates carry two effects: a standard deflationary effect through aggregate demand and an

inflationary effect through expected future inflation. Expected future inflation follows because

higher rates increase the fiscal debt burden, signaling that greater inflation may occur in the fu-

ture. While the standard demand effect can reduce inflation on impact, inflation returns more

strongly through the effect on expectations (sticky inflation). An optimal commitment policy al-

lows for trend in inflation to reduce the debt burden until a fiscal reform takes place.
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1. Introduction

Inflation became globally endemic in the aftermath of the Covid-19 pandemic. Most central banks

responded to calls to raise policy rates to combat inflation. The vision behind these policy actions

is that without a proper response, expectations could become unanchored, further fueling inflation.

This view takes for granted that interest rate increases, by contracting aggregate demand, lower

current inflationary pressures and, furthermore, signal the central bank’s commitment to combat

inflation. This conventional view, however, abstracts away from the fact that, with higher interest

rates, national debts accumulate faster and potentially reach points where financing them solely

through taxes may become unfeasible (for example Zhengyang, Lustig, Nieuwerburgh and Xiaolan,

2022). This observation is particularly disturbing in the post-pandemic years as inflation surged

while most national debts rose to levels not seen in decades. The concern is that, by provoking a

greater debt burden, the increase in rates may backfire through agents’ expectations if they signal

that a future increase in inflation will be necessary to render debts sustainable.

This paper studies the dynamics of inflation when nominal policy rates have the dual effect of

impacting consumer demand and debt sustainability. Our goal is to analyze, in the simplest way pos-

sible, how the expectation of a greater need to inflate away government debt in the future, impacts

the effects of interest-rate increases today. To that end, we study a paper-and-pencil new-Keynesian

model where there is an expectation that the fiscal authority may need a monetary-fiscal reform to

render its debt sustainable. During the reform, the monetary authority allows for a burst in inflation,

provoking negative real rates for a fixed amount of time. After that time, debt is made sustainable

and a Taylor rule also ensures the stability of the output gap and inflation thereafter. The focus of

this paper is on the dynamics of inflation prior to such fiscal reform, as agents expect that monetary

policy will provide a temporary support during the fiscal reform. The key tension is that, prior to the

reform, increases in real interest rates carry two effects with opposing effects on inflation: the first

is the conventional decrease aggregate demand, the second is the increase in inflation expectations

that respond to the greater debt burden.

The paper makes three theoretical contributions. First, we describe the phenomenon of sticky
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inflation. We refer to sticky inflation as the feature that attempts to curtail inflation with interest

hikes, while successful for a period of time, ends provoking higher inflation in the medium term.

This occurs even though long-term inflation expectations are anchored. The reason is that any initial

attempt to raise real rates provokes an increase in inflation expectations that eventually offsets the

initial impact in the output gap. The second contribution is to derive optimal policies under sticky

inflation. We show that these are characterized by allowing the inflation rate to have a trend. Finally,

we describe how sticky inflation alters the optimal response to shocks in the new-Keynesian model.

For illustration purposes, we characterize sticky inflation in the context of shocks to a Taylor

interest-rate rule that aims to close the output gap. We show how temporary increases in nomi-

nal rates can reduce inflation on impact, but eventually inflation catches up. We also show that a

conventional Taylor rule leads to a constant positive inflation rate, whereas the output gap and the

path of debt grow exponentially. Likewise, a policy that aims to stabilize debt, leads to an exponen-

tial growth in inflation and the output gap. All in all, attempting to stabilize one outcome variable

(inflation, the output gap, or debt) produces a trend in the other variables.

In the context of sticky inflation, it remains unclear what the optimal monetary policy should be.

For that reason, we investigate optimal monetary policy with commitment. We show that prior to

a reform, a monetary authority interested only in minimizing the square of inflation and the output

gap, should indirectly consider the squared deviation of debt relative to an inflation-neutral bench-

mark, into its objective function. Prior to the reform, the objective function consists of a trade-off

between trends in all variables. In fact, the optimal policy allows for a trend in inflation, the output

gap, and debt. We show that the optimal choice of trend is summarized by the choice of a constant

real interest target prior to the reform, which has an analytical expression. Finally, we show that

sticky inflation breaks the divine coincidence between the stabilization of inflation and the output

gap because the inflation expectations incorporate the possibility of a monetary-fiscal reform.

The key policy message from the paper is that unless fiscal effects are solved, the sole expectation

of inflation-financed debt impairs current monetary policy and changes standard results in new-

Keynesian economics. The phenomenon we describe in the paper may become particular relevant

as debt levels are perceived as unsustainable.

2



Sources: Dallas Fed; BEA fred.stlouisfed.org

Q3 2019 Q1 2020 Q3 2020 Q1 2021 Q3 2021 Q1 2022 Q3 2022 Q1 2023

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Market Value of Gross Federal Debt/Gross Domestic Product

(a) Debt
Source: U.S. Bureau of Economic Analysis fred.stlouisfed.org

Q3 2019 Q1 2020 Q3 2020 Q1 2021 Q3 2021 Q1 2022 Q3 2022 Q1 2023

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Net lending or net borrowing (-), NIPAs: Government/Gross Domestic Product

(b) Primary surplus
Sources: Cleveland Fed; BLS fred.stlouisfed.org

Pe
rc

en
t ,

 P
er

ce
nt

 C
ha

ng
e 

fr
om

 Y
ea

r 
A

go

Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022 Jan 2023 Jul 2023

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

-7.5

1-Year Real Interest Rate; Seasonally Adjusted
1-Month Real Interest Rate
Consumer Price Index for All Urban Consumers: All Items in U.S. City Average

(c) Real rates and inflation

Figure 1: Pre- and Post-COVID-19 Dynamics

In what contexts is this model relevant? In response to the COVID-19 crisis, the United States

implemented an unprecedented fiscal expansion, resulting in the highest level of government debt

(normalized by GDP) in the post-war era. Figure 1 panel (a) displays the US debt-to-GDP ratio

(in market value) from 2019 Q1 to 2023 Q2.1 The figure illustrates a sharp increase in government

debt in 2020 Q2, followed by a rapid decline. By 2022 Q4, the debt had reached its pre-pandemic

average, representing a decline of over 40 percentage points in a period of two and a half years.

Importantly, this decline was not the result of fiscal surpluses. The primary deficit remained be-

low its pre-pandemic average until 2022, as shown in Figure 1 panel (b). Instead, the decrease in

government debt can be attributed to inflation being above the Federal Reserve’s target and a neg-

ative real-interest rate on government debt during much of the post-pandemic period, as indicated

in Figure 1 panel (c). Furthermore, medium-term inflation expectations, measured as the probabil-

ity of persistently high inflation in the next 5 to 10 years, became unanchored, as demonstrated by

Hilscher, Raviv and Reis (2022). During this time, many commentators argued that monetary policy

was not sufficiently aggressive to contain the inflation rate. However, according to our theory, a more

aggressive stance would have resulted in higher trend inflation. Given the private sector’s belief of

a non-trivial probability that the Federal Reserve would yield to the treasury and reduce the debt

through inflation and negative rates, the optimal monetary policy response is to allow a short-term

spike in the inflation rate to anchor the private sector’s expectations in the medium-term.

Another relevant context is high-inflation countries such as Argentina, Brazil or Turkey. These

1A similar dynamics is observed when plotting the debt held by the private sector instead.
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countries have appointed orthodox monetary policy makers that have attempted to raise real interest-

rates to combat inflation. While these countries were originally successful at curtailing inflation, in-

flation has consistently returned. We contend that such policies cannot be successful at controlling

inflation because fiscal expectations are not anchored.

Literature Review. Since the surge in inflation after the Covid-19 pandemic, understanding the

drivers of inflation has, once again, regained prevalence in academic and policy debates. As a re-

sult, multiple papers have tried to explain inflationary dynamics from an analytical and quantitative

standpoints. The profession is divided into two camps: one that links a nominal anchor to fiscal

factors and one that does not.

On the analytical front, for example, Lorenzoni and Werning (2023b) focus on the dynamic inter-

action between wage and price inflation.2 Blanchard and Bernanke (2023) present a semi-structural

model that decomposes the drivers of inflation into labor-market tightness and energy shocks, but

there is no scope to fiscal shocks. Similarly, Gagliardone and Gertler (2023) study the role of sup-

ply shocks and labor-market frictions, but their model leaves fiscal policy as unexplained demand

factors. In all of these papers, the fiscal side, is implicitly detached from nominal variables, leaving

no room to study the interaction between inflation and fiscal solvency. This recent stream of papers

follows the new-Keynesian tradition that typically abstracts away from how debt-financing impairs

monetary policy.

The interaction between monetary policy and fiscal solvency is vast and is part of core textbook

material, (e.g., Ljungqvist and Sargent, 2018). The textbook approach abstracts away from nominal

rigidities and assumes that deficits are financed with transfers of nominal balances of money. Leeper

(1991) studies the interaction between monetary policy and fiscal solvency in economies where mon-

etary policy follows a nominal interest-rate rule, that does not satisfy the Taylor principle. A key

feature of this theory is that government debt is nominal. Together with Leeper (1991), Woodford

(1998); Cochrane (1998) show that under flexible-price, the price-level will jump in response to fis-

2On related work, Lorenzoni and Werning (2023a) shows how inflationary spirals can emerge from strategic interactions
between different parties that set wages in a staggered fashion.
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cal news, thus providing a fiscal-theory of the price level (FTPL).3 These papers also show that in

such environments, increases in nominal policy rates lead to counter-factual increases in inflation,

following the logic of Fisherian effects. In turn, Woodford (2001); Cochrane (2001) show that with

long-term debt, increases in nominal policy rates lead to decreases in inflation, overturning the orig-

inal counterfactual Fisherian effect. However, Sims (2011) that the increase in nominal rates can

reduce inflation only in the short run, but eventually raises inflation.

This paper shares the emphasis on how fiscal solvency impacts inflation. However, our setting

differs in important dimensions: we focus on the behavior in Phase I, where monetary policy is active

and the Taylor principle is satisfied, in contrast to papers in the FTPL tradition. We find a similar a

“stepping-on-a-rake” as the one in Sims (2011), but here the effect does not follow from the valuation

of nominal long-term debt. Rather, the result follows from the confluence of two forces: a standard

aggregate demand effect and an the effect on higher interest-rate burden.

A second generation studies the interaction between monetary policy and fiscal solvency that

allows for sticky prices (e.g. Sims, 2011; Bianchi and Melosi, 2017; Leeper and Leith, 2016; Caramp

and Silva, n.d.)). A common theme among these papers is that with nominal rigidities, interest-

rate shocks and fiscal shocks do not lead to jumps in prices, but to persistent responses in inflation.

Most of analytical work in this area makes an assumption regarding fiscal or monetary dominance

although regime switching and expectations of policy changes are present in quantitative work.4

Among these papers, the closest to ours is Bianchi, Faccini and Melosi (2023). In the setting in Bianchi

et al. (2023), some fiscal shocks are adjusted with taxes and others are not, whereas monetary policy

is always guided by a Taylor rule. In their setting, some fiscal shocks provoke inflation and the

authors estimate that such unfunded fiscal shocks have been key drivers of inflation in the US. Our

approach is similar in that fiscal shocks funded with a combination inflation and taxes during reform

phases. Our contribution is to present a simple environment that allows for analytic results, as do

Werning (2012) or Cochrane (2017) in the context policies at the zero-lower bound. We make two

analytical contributions: we showcase the stepping-on-a-rake phenomenon and show that monetary

3In this papers, the timing of taxes does not matter as Ricardian equivalence holds.
4See for example, Davig and Leeper (AER 2007); Chung, Davig, and Leeper (JMCB 2007), Bianchi (Restud 2013), Bianchi

and Melosi (NBER Annual 2013, AER 2017) (Bianchi and Melosi, 2017).
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policy before a fiscal reform allows for trend inflation.

Our study of optimal policies also relates to some normative work in this area. Leeper, Leith,

and Liu (JME 2021) and Leeper and Zhou (JME 2023) study optimal long-term debt policy. See also

Leeper and Leith (2016). In these articles, the level and maturity of debt plays an important role,

but the distinction between active and passive regimes disappear when considering optimal policy.5

This is not the case in our paper because we focus on the dynamics prior to a fiscal-monetary reform.

A key feature of our environment is that reforms happen in the future, so the expectation com-

ponent of inflation is key in determining current inflation. This is a common feature in other papers

such as Carvalho, Moench and Preston (forthcoming) and Eusepi and Preston (2012). In particular,

Eusepi and Preston (2012) also show that in similar environments inflation will trend. On the empiri-

cal front, a number of papers have found that long-term forecasts are responsive to monetary shocks.

In the US, Nakamura and Steinsson (n.d.) show that increases in policy rates reduce long-term fore-

casts of inflation. While this correlation is contrary, to our theory, it demonstrates that long-term in-

flation expectations are endogenous to policy. There is no reason why the relation between increases

in policy rates reduce long-term forecasts of inflation should remain stable if economies enter un-

sustainable debt levels. Coibion, Gorodnichenko and Weber (2022) study a randomized-control trial

and argue that news about future debt leads households to anticipate higher inflation, both in the

short run and long run, and induces households to increase their spending. In a long sample cover-

ing multiple countries, Brandao-Marques, Casiraghi, Gelos, Harrison and Kamber (2023) shows that

surprise increases in debt levels raise long-term inflation expectations predominantly in emerging

markets. Moreover, consistent with our theory, they find that the effects are stronger when initial

debt levels are already high. While developing countries who have traditionally held much higher

debt levels, it is possible for developed economies to follow that path.6

2. Model

5But typical fiscal theory ingredients may play a larger or smaller role. Contrast between Schmitt-Grohe and Uribe
(2004) - inflation plays minor role with sticky prices - vs Leeper and Zhou (2023) -

6de Mendonca and Machado (2013) perform a similar study focusing on the case of Brazil.
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2.1 Environment

We cast the model in continuous-time. The economy is populated by households, firms, and a gov-

ernment. The government engages in a fiscal expansion, while households and firms face uncer-

tainty regarding the reaction of fiscal and monetary authorities. We describe next the behavior of the

government, households, and firms in detail.

Government. The government is comprised of a fiscal and a monetary authority. The fiscal author-

ity sends lump-sum transfers Tt to households, or levy taxes if Tt < 0, and issues short-debt debt

whose real value is denoted by Bt. The monetary authority sets the nominal interest rate it. The

government’s flow budget constraint is given by

Ḃt = (it − πt)Bt + Tt, (1)

given B0 > 0, where πt denotes the inflation rate.

We assume that fiscal transfers are given by

Tt = −ρBt +Ψt, (2)

where ρ denotes the interest rate in the zero-inflation steady state. The economy will be in steady

state if the fiscal authority sets Ψt = 0 for all t ≥ 0.

We are interested in the effects of a fiscal expansion. In a first stage, which we refer to as Phase

I, we assume that Ψt > 0 until one of two random events happen. First, with Poisson intensity θ,

the fiscal authority switches to a regime where Ψt = 0. As the fiscal expansion was debt-financed,

this corresponds to a fiscal adjustment where taxes end up permanently higher to finance the ac-

cumulated debt. In this case, we assume the monetary authority implements zero inflation, so the

economy immediately jumps to a steady state. If this was the only possibility, then the fiscal expan-

sion would be fully backed by future taxes, despite the timing of the adjustment being uncertain.

However, we assume that, with Poisson intensity θ∗, the economy switches to a regime where the

fiscal expansion is not fully backed by future taxes. In particular, the monetary authority maintains
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Figure 2: Timeline of events

interest rates sufficiently low for T ∗ periods, until debt reaches a sustainable level Bss. This period

of low interest rates is required to bring the debt back to a sustainable level, given the limited fiscal

support. We henceforth refer to this second stage as Phase II.

Figure 2 summarizes the timeline of events. Over a small time interval ∆t, a fiscal adjustment

happens, and the economy goes to a steady state, with probability θ∆t. The economy goes to Phase

II with probability θ∗∆t, where the monetary authority provides a temporary support to the fiscal

authority. Finally, the economy remains in Phase I with the remaining probability, where the fiscal

authority engages in a fiscal expansion.

During Phase I, the monetary authority is free to choose its interest rate policy. In particular, we

assume that nominal rates satisfy a Taylor rule:

it = ρ+ ϕπt + ut, (3)

where ϕ > 1. The fact that the Taylor coefficient satisfies ϕ > 1 implies the economy is in an ac-

tive monetary regime, in the terms of Leeper (1991). The presence of the monetary disturbance ut

provides freedom to the monetary authority to choose how to react to the fiscal expansion. We will

later consider different policy reactions by the monetary authority which implicitly correspond to

different choices of the disturbance ut. Notice that ut captures the response of the monetary authority
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to the fiscal expansion, so we refer to it as a disturbance to the policy rule instead of a shock. We refer

to the case with ut = 0 as the undisturbed Taylor rule.

Notation. We index variables in Phase II using an asterisk (∗) superscript whereas variables during

Phase I do not carry that superscript. For example, πt represents inflation at time t of Phase I whereas

π∗t is inflation at time t since the start of Phase II. Variables in the steady state are denoted by an upper

bar. For example, consumption in steady state is denoted by C.

Households. The problem of a household is given by

Vt(Bt) = max
[Cs,Ns]s≥t

Eht

[∫ t̃

t
e−ρ(s−t)

(
logCs −

N1+φ
s

1 + φ

)
dt+ e−ρt̃Ṽt̃(Bt̃)

]
,

subject to

Ḃt = rtBt +
Wt

Pt
Nt +Dt + Tt − Ct,

and a No-Ponzi condition limT→∞ Eht [ηTBT ] = 0, where ηt denotes the stochastic discount factor

(SDF) in this economy. Bt denotes the real value of bonds held by households, rt = it − πt is the real

interest rate, Wt is the nominal wage, Pt is the price level, and Dt are dividends payed by firms. The

random time t̃ denotes the first arrival time of one of the Poisson events, either the fiscal adjustment

or the switch to Phase II, whatever happens first. Ṽt denotes the value function after the switch.

We do not impose rational expectations. To the extent that such fiscal expansions, and the associ-

ated changes in policy regime, correspond to potentially rare events, it may difficult for households

to ascertain the true probabilities of policy changes. Therefore, we assume that, under households’

subjective beliefs, the economy switches to Phase II with Poisson intensity θ∗h and the economy moves

to a steady state with Poisson intensity θh. The households’ Euler equation during Phase I is

Ċt
Ct

= (it − πt − ρ) + θ∗h

[
Ct

CJt
− 1

]
+ θh

[
Ct

C
− 1

]
, (4)

where C denotes consumption in steady state and CJt denotes consumption when the economy

switches to Phase II. It captures a potential jump in consumption after the change in regime. See
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Appendix A for a derivation. In the absence of policy uncertainty, θ∗h = θh = 0, we obtain the stan-

dard Euler equation. The last two terms in the expression above capture the effects of the change in

policy regime.

Labor supply is given by the usual intra-temporal condition:

Wt

Pt
= CtN

φ
t . (5)

Firms. There are two types of firms in the economy: final-goods producers and intermediate-goods

producers. Final goods are produced by competitive firms according to the production function

Yt =
(∫ 1

0 Y
ϵ
ϵ−1

i,t di
) ϵ−1

ϵ
, where Yi,t denotes the output of intermediate i ∈ [0, 1]. The demand for

intermediate good i is given by Yi,t =
(
Pi,t
Pt

)−ϵ
Yt, where Pi,t is the price of intermediate i, Pt =(∫ 1

0 P
1−ϵ
i,t di

) 1
1−ϵ is the price level, and Yt is the aggregate output.

Intermediate-goods producers have monopoly over their variety and operate the technology

Yi,t = ANi,t, where Ni,t denotes labor input. Firms are subject to quadratic adjustment costs on

price changes, so the problem of intermediate i is given by

Qi,t(Pi) = max
[πi,s]s≥t

Eft

[∫ t̃

t

ηs
ηt

(
Pi,s
Pi,t

Yi,s −
Ws

Ps

Yi,s
A

− φ

2
π2i,s

)
ds+

ηt̃
ηt
Q̃i,t̃(Pi,t̃)

]
, (6)

subject to Yi,t =
(
Pi,t
Pt

)−ϵ
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi, where φ is the price adjustment cost

parameter and t̃ denotes the random time at which there is a policy regime.

Firms’ beliefs are allowed to be different from households’ beliefs. This is consistent with the

evidence in Candia, Coibion and Gorodnichenko (2023), who show that firms’ expectation often

deviates significantly from the expectation of households or professional forecasters. Therefore, we

assume that firms expect the fiscal adjustment to happen with Poisson intensity θf and that the

economy switches to Phase II with intensity θ∗f .

We show in Appendix A that the optimality condition for firms implies the following non-linear
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New Keynesian Phillips curve (NKPC):

π̇t = (it − πt)πt + θ∗f
ηJt
ηt

(
πt − πJt

)
+ θf

η

ηt
πt −

ϵφ−1

A

(
Wt

Pt
− (1− ϵ−1)A

)
Yt, (7)

where πJt denotes the jump inflation term, corresponding to the inflation rate after the economy

switches to Phase II, and similarly for the jump SDF term ηJt . η corresponds to the SDF in steady

state.

2.2 The log-linear system

We focus on a log-linear solution around the zero-inflation steady state. The steady-state economy

corresponds to the case Ψt = 0 and ut = 0, so Bt = B, Ct = C, it = ρ, and πt = 0, where B corre-

sponds to the initial condition for government debt and C is the steady-state level of consumption,

as defined in Appendix A. During Phase I, we assume Ψt = B × ψt, for ψt > 0, so there is a fiscal

expansion. The linearized government’s budget constraint during Phase I is given by:

ḃt = it − πt − ρ+ ψt, (8)

where bt = Bt−B
B

. If the real rate is kept at its natural level, it − πt = ρ, then government debt grows

over time due to the fiscal transfers ψ.

During Phase II, the fiscal shocks are set to zero, ψ∗
t = 0. The monetary authority implements a

constant real interest rate r∗ for the first T ∗ periods of Phase II. In particular, the monetary authority

chooses i∗t = r∗ + π∗t such that b∗T ∗ = Bss−B
B

. The flow budget constraint for the first T ∗ periods of

Phase II is then given by:

ḃ∗t = r∗ − ρ, (9)

where b∗t denotes the level of debt after t periods the economy switched to Phase II.

The linearized Euler equation during Phase I is given by

ẋt = it − πt − ρ+ θhxt − θ∗hx
J
t , (10)
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where xt ≡ Yt−Y
Y

denotes the output gap and θh ≡ θ∗h + θh. As there is no further uncertainty in

Phase II, the Euler equation is simply ẋ∗t = i∗t − π∗t − ρ.

Policy uncertainty leads to a discounted Euler equation, similar to other forms of uncertainty, such

as the uninsurable idiosyncratic income risk of McKay, Nakamura and Steinsson (2016) or the ag-

gregate disaster risk in Caramp and Silva (2021). To see the role of discounting, we can integrate

forward the Euler equation to obtain:

xt = −
∫ ∞

0
e−θhs(it+s − πt+s − ρ)ds+ θ∗h

∫ ∞

0
e−θhsxJt+sds, (11)

so the effect of changes in future interest rates gets discounted by θh. The second term in the expres-

sion above corresponds to an expectation effect.7 It captures the impact on xt of the expectation of a

jump in the output gap when the economy switches to Phase II.

The linearized NKPC is given by

π̇t = (ρ+ θf )πt − κxt − θ∗fπ
J
t , (12)

where θf ≡ θ∗f + θf and κ > 0 is a coefficient defined in the appendix. In contrast to the standard

formulation of the NKPC, inflation dynamics depends not only on the current value of the output

gap xt, but also on firms’ inflation expectation induced by the potential change in policy regime.

Integrating the NKPC forward, we obtain the inflation rate

πt = κ

∫ ∞

t
e−(ρ+θf )(s−t)xsds+ θ∗f

∫ ∞

t
e−(ρ+θf )(s−t)πJs ds. (13)

This expression shows the role of the output gap and of the expectation term. These expectation

effects play an important in shaping the trade-offs faced by the monetary authority when responding

to a fiscal expansion.

7See e.g. Leeper and Zha (2003) for a definition and discussion of expectation-formation effects.
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3. Three policy experiments

In this section, we consider three different policy experiments where the monetary authority at-

tempts to stabilize the output gap, inflation, or government debt. These experiments illustrate the

implications of different policy responses by the central bank to a fiscal expansion that is expected

not to be fully backed by future taxes.

The behavior of firms’ expectations will be central in all three cases. To isolate the role of these

expectations, we make the simplifying assumption that θ∗h = θh = 0, so the Euler equation behaves

as in the standard New Keynesian model. Given that the implications of a discounted Euler equation

have been already extensively studied in the literature, in this section we focus on the role of firms’

expectations in the NKPC. We revisit the role of households’ expectation effects in Section 4. Without

loss of generality, we further assume that θ∗f = θ∗ and θf = θ.

3.1 Output gap stabilization

In our first policy experiment, we assume that the monetary authority stabilizes output gap, that is,

xt = 0 during Phase I. We later describe the path of monetary disturbances ut required to implement

this outcome.

Phase II. During Phase II, the monetary authority maintains the real interest rate low for T ∗ periods

and implements zero inflation after that. Debt evolves according to b∗t = b∗0 + (r∗ − ρ)t for t ≥ T ∗. To

ensure that debt reaches the sustainable level after T ∗ periods, the real interest rate must satisfy the

condition:

r∗ = ρ− b∗0 − bn

T ∗ , (14)

where bn ≡ Bss−B
B

denotes the natural level of debt, that is, the initial level of debt at Phase II such

that the real rate, and ultimately output and inflation, immediately jumps to its steady-state level.

The monetary authority implements zero inflation when the sustainable debt level is achieved,

that is, {x∗T ∗ , π∗T ∗} = {0, 0}. Given this terminal condition, and the Euler equation ẋ∗t = r∗ − ρ, we
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obtain the output gap:

x∗t = (r∗ − ρ)(t− T ∗), t ∈ [0, T ∗], (15)

From the NKPC and the expression for the output gap, we obtain the inflation rate:

π∗t = κ(r∗ − ρ)

∫ T ∗

t
exp(−ρ(s− t))(s− T ∗)ds.

For an economy that switches to Phase II after t periods, initial debt is given by b∗0 = bt. Using

the expression for the real rate, we can then express initial inflation in terms of a debt gap bt − bn:

π∗(bt) ≡ κΦ(bt − bn), (16)

where the coefficient Φ is defined as follows:

Φ ≡
∫ T ∗

0
exp(−ρs)

(
1− s

T ∗

)
ds > 0.

Equation (16) shows that initial inflation in Phase II depends on the amount of debt inherited

from Phase I. In particular, what is relevant is bt − bn, the difference of the government to its natural

level. Equivalently, bt − bn can be interpreted as the part of government debt that is not fully backed

by future taxes. We find that the larger the initial level of government debt relative to its natural level,

the lower the real rate must be, and the higher is the inflation rate. The coefficient Φ captures the

pass-through from debt to inflation and it captures the forward-looking component of the reform.

This pass-through from debt to inflation depends on the specifics of the Phase II reform, and does

not depend on monetary policy during Phase I. As long as we can cast different reforms into a

single pass-through coefficient, we can always change Φ for a different constant and reach the same

conclusions regarding Phase I.

Phase I. We assume that the fiscal authority sets ψt = ψ, a constant fiscal expansion while in Phase

I. To stabilize the output gap during Phase I, xt = 0, the real rate must satisfy it−πt = ρ. Government

debt is then given by bt = b0 + ψt. The following Lemma presents a formula for the jump inflation

14



πJt term in the Phillips curve of Phase I (Equation 12):

Lemma 1 (Jump Inflation). Inflation path is increasing in the time of Phase I. In particular, the jump inflation

can be written as: πJt = κΦ (b0 + ψt− bn).

Jump inflation tracks the path of debt relative to natural. In particular, jump inflation πJt grows

at rate π̇Jt = κΦψ > 0. Recall that κΦ is the pass-through rate from the debt gap to inflation and

that debt trends at rate ψ. Given jump inflation, and the assumption that the monetary authority

stabilizes the output gap, we obtain the inflation rate using the NKPC (Equation 13):

πt = θ∗
∫ ∞

t
e−(ρ+θ)(s−t)πJs ds.

Using the expression for jump inflation (Equation 16), the solution to inflation is given by

πt = θ∗κΦ

∫ ∞

t
e−(ρ+θ)(s−t)(bt + ψ(s− t)− bn)ds (17)

=
θ∗κΦ

ρ+ θ

[
bt − bn +

ψ

ρ+ θ

]
.

Therefore, inflation inherits the trend in government debt.

Proposition 1 (Trend in Inflation). Suppose the monetary authority eliminates the output gap. Then, infla-

tion satisfies:

πt = π0 +
θ∗κΦ

ρ+ θ
ψt, (18)

where π0 = θ∗κΦ
ρ+θ

[
b0 − bn + ψ

ρ+θ

]
.

Proposition 1 shows that, in order to stabilize the output gap, the monetary authority must accept

an inflation rate that increases over time. Notice that the inflation satisfies:

π̇t =
θ∗

ρ+ θ
π̇Jt .

That is, prior to the monetary-fiscal reform, inflation grows proportionally to the growth in jump

inflation. That is, inflation is sticky. Because jump inflation trails with the path of debt, inflation will
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Figure 3: Pre and Post Reform Equilibrium Objects

Note: Red lines correspond to reform paths that occur at different points in time.

also trail with the path of debt. This tells us something potentially deep: inflation features a trend

which will be a scaled down version of the path of real debt. As a result, an attempt to combat

inflation in the short run may be offset by a change in the level component of trend inflation. We

formalize this intuition below.

Expression (18) also captures the importance of expectations of how the fiscal expansion will be

financed. If firms believe that it is much more likely that the fiscal expansion will be financed by an

increase in future taxes, θ ≫ θ∗, then the impact on inflation will be greatly attenuated (recall that θ =

θ+θ∗). In contrast, if firms attribute a greater chance to the financing of the fiscal expansion requiring

some degree of monetary accommodation, θ∗ > θ, these effects are much more pronounced.

An Example of the Dynamics. To fix ideas, Figure 3 shows the typical paths of inflation, debt, and

the output gap, during Phase I and Phase II. For simplicity, we assume that θ = 0. In Panel (a), we

find an example of a path of inflation which is plotted together with its corresponding jump inflation

term (the dot dashed term). The red dashed curves represent different inflation levels corresponding

to different dates of the arrival of Phase II. Notice that when Phase II is initiated, inflation jumps to

the jump inflation term. If the reform happens early, inflation may actually jump downwards. This

happens because inflation is the net-present discounted of all future jump inflation which increase

over time with debt. If the reform happens early, inflation jumps downward because the initial jump

inflation is lower than the net-present expected discounted value of future jump inflation.

16



Panel (b) shows the path of debt, together with the paths for debt corresponding to reforms that

arrive at different dates. Prior to the reforms, debt grows linearly at rate ψ until a reform occurs. At

each possible reform date, debt trends downwards toward its sustainable level in exactly T periods.

Notice how the slope of debt after the reform is steeper, the later the reform. This reflects that, as

reforms take the same amount of time, reforms that begin with higher debt levels require lower

negative real interest-rate. Panel (c) shows the output gap. The later the reform, the largest the

response of the output gap and, hence, a greater labor wedge. This effect results from the feature

that later reforms correspond to more negative rates and higher inflation. A key lesson is that the

later the reform, the greater the labor wedge.8

3.2 Inflation stabilization

In the previous derivation, we assumed that there are no attempts to fight inflation in Phase I, as the

monetary authority is focused on stabilizing the output gap. We showed that in that case, inflation

is sticky. We now investigate the effects of a temporary attempt to fight inflation while keeping

the protocol in Phase II as above. In turn, during Phase I, we assume that the monetary authority

attempts to run a contractionary policy to contain inflation by temporarily raising rates, such that

the real rate satisfies rt − ρ = e−θrt(r0 − ρ), for a given initial rate r0 > ρ and persistence parameter

θr ≥ 0. We use a superscript og to denote the policy with constant real rate, corresponding to the

output-gap stabilization policy derived in the previous section.

The output gap is given by

ẋt = rt − ρ⇒ xt = − 1

θr
(rt − ρ), (19)

where we used the terminal condition limt→∞ xt = 0, a form of long-run neutrality. As rt > ρ, the

output gap is negative at all dates.

8Our model can be easily adapted to admit trend growth. Since this only affects discount rates, the observation is true
even in a growing economy.
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In turn, the path of debt is given by

bt = bogt +
1− e−θrt

θr
(r0 − ρ), (20)

where bogt = b0 + ψt corresponds to the debt level under the output-gap stabilization policy.

Next, we solve for inflation using the NKPC of Phase I (Equation 13):

πt = κ

∫ ∞

t
e−(ρ+θ)(s−t)xtds+ θ∗

∫ ∞

t
e−(ρ+θ)(s−t)πJt ds.

The solution satisfies a superposition principle: we can super-impose a path to the output gap and

one for jump inflation and we will obtain another path that satisfies the Phillips curve. We now have

that inflation is given by the sum of two effects, the fight-inflation effect and a jump-inflation effect.

We can write inflation, relative to the solution without a shock, as:

π0 − πogt = F πt + Jπt .

The first term reflects the effect on the output gap that results from the policy. We can label this

the fight-inflation term:

F πt = − κ

θr

rt − ρ

ρ+ θ + θr
. (21)

This term is negative, since rt > ρ, increasing over time, and converges to zero as t → 0. Clearly,

an increase in rt above the natural rate ρ mitigates inflation, as in standard versions of the New

Keynesian model.

The second term, the jump inflation term, is:

Jπt =
θ∗κΦ

θr

[
1

ρ+ θ
− e−θrt

ρ+ θ + θr

]
(r0 − ρ). (22)

using the fact that πJt = κΦ(bt − bn) and bt − bogt = 1−e−θrt
θr

(r0 − ρ). The jump inflation term is

positive, increasing over time, and converges to a positive limit as t→ 0. Jump inflation is related to
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government debt, which is increasing in the level of the real rate. In a nutshell, debt accumulation

pressures prices upwards.

Which effect dominates, the fight inflation or the jump inflation, depends on the persistence,

but not the size, of the policy. The source of the opposing effects is that an increase in rates, while

provoking a decline in the output gap, also provokes an increase in the real path of debt, leading to

an increase in the expectation of higher inflation. Next, we show that, while the monetary authority

can successfully fight inflation at time zero, inflation will always return.

We can verify from the expressions above that when r0 = ρ, both F π0 and Jπ0 are zero. More

generally, these expressions allow us to analyze the effects at t = 0, once the fight-inflation strategy

is put in place. We have the following condition for a successful policy.

Proposition 2 (Successful fight condition). Suppose r0 > ρ. The policy reduces inflation at time zero if

and only if:

θr <
ρ+ θ

θ∗Φ
.

The proposition shows that a successful fight-inflation policy requires that the fight-inflation ef-

fect be greater than the jump-inflation effect. The condition above shows that the increase in interest

rates must be persistent enough for the fight-inflation term to dominate at t = 0. Hence, it is possible

to fight inflation and reduce it at time zero. How persistent the increase in real rates needs to be de-

pends on the expectation parameters. If θ is large, then firms expect the fiscal expansion to be likely

to be resolved by higher future taxes, so even relatively transitory interest rate hikes are successful

in reducing inflation. In contrast, if θ∗ is large, then firms believe it is likely that some monetary

support is necessary to stabilize debt, so the increase in real rates needs to be very persistent to bring

down inflation at the initial period.

Next, we consider what happens to inflation as we move away from t = 0. In general, inflation πt

depends on the sum of the fight and jump inflation terms. Again, the two effects oppose each other.

Given that the fight-inflation term converges to zero, while the jump-inflation term converges to a

positive constant, we arrive at the following unpleasant “stepping-on-a-rake” result:

Proposition 3 (Stepping on a Rake). There always exists a T̂ sufficiently large such that πt > πogt for
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t > T̂ . Moreover, T̂ > 0 if the condition in Proposition 2 is satisfied.

The main message of this proposition is that while a policy may be successful at curtailing infla-

tion temporarily, eventually, inflation comes back stronger. Again, inflation is sticky! The reason is

that the effect on the output gap eventually fades away whereas the effect on the path of government

debt grows faster. As a result, the jump inflation term eventually dominates. There is no possibility

to permanently control inflation, prior to the reform of Phase II. Sims (2011) call that boomerang

feature of inflation “stepping-on-a-rake.” Importantly, we find this result under very different con-

ditions. Sims (2011) obtains the stepping-on-a-rake result in a model with long-term bonds and a

Taylor coefficient ϕ < 1, while we obtain this result under opposite conditions: short-term bonds

and a Taylor coefficient ϕ > 1. As shown by Cochrane (2018), long-term bonds are strictly neces-

sary to obtain this result in the absence of the expectation effects we consider in this paper, which

indicates that our result operates through a different mechanism than the one originally obtained by

Sims (2011).

An Example of the Fight Inflation Policy. Figure 4 shows the paths of inflation, debt, and the out-

put gap, considering an attempt to fight inflation in Phase I. We again set θ = 0. In Panel (a), we

find an example of a path of inflation together with a path of inflation corresponding to a temporary

increase in policy rates for 4 years. Notice how the example illustrates Propositions 2 and 3. While

the strategy is successful at combating inflation earlier on, inflation returns a year into the policy.

Panel (b) shows why: it plots the fight inflation and jump inflation components. The fight inflation

component is initially strong but eventually dies out, as the effect on aggregate demand vanishes.

The expected inflation effect is initially weak, but continues to increase as the path of log debt in-

creases at a higher trend level. Panel (c) shows the path of debt. Debt is growing linearly without

the policy. With the policy, debt picks up in response to the higher real interest rates to eventually

trend at the same rate. Finally, Panel (d) shows the output gap (or labor wedge) corresponding to

the policy attempt. The policy is contractionary, as dictated by the fight inflation effect.

The example shows that with an expectation of a fiscal reform, attempts to curtail inflation have

undesired effects. Any initial increase in rates eventually leads to higher inflation, unlike the canon-
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Figure 4: Equilibrium Paths with and without Contractionary Monetary Shock

Note: Red lines correspond to reform paths that occur at different points in time.

ical new-Keynesian model.

3.3 Debt stabilization

As our third policy experiment, we consider the case of a monetary authority who attempts to stabi-

lize the government debt. This requires the real rate to be given by rt = ρ−ψ, so bt = b0. We assume

that the output gap is zero at a given date T0, so the output gap is given by xt = ψ(T0 − t). Inflation

is given by

πt =
κ

ρ+ θ

(
xt −

ψ

ρ+ θ

)
+
θ∗κΦ

ρ+ θ
(b0 − bn). (23)

To stabilize debt, the output gap and inflation must have a downward trend. The monetary authority

must initially overheat the economy to slow down the accumulation of debt.
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3.4 Determinacy and implementability

In the three policy experiments considered so far, we assumed that the monetary authority can im-

plement an equilibrium where the output gap is stabilized, or real rates are exponentially decaying,

or government debt is stabilized. We consider next the conditions under which the equilibrium is

uniquely determined and whether the monetary authority can implement any given equilibrium.

The equilibrium conditions consist of the Euler equation (10), the NKPC (12), the Taylor rule (3),

and the debt dynamics (8). We can write the dynamic system as follows:



ẋt

π̇t

ḃt


=



0 ϕ− 1 0

−κ ρ+ θf −θ∗fκΦ

0 ϕ− 1 0





xt

πt

bt


+



ut

θ∗fκΦb
n

ut + ψt


, (24)

given b0. The next proposition characterizes the conditions for determinacy and how to implement

a given equilibrium.

Proposition 4 (Determinacy and implementability). Consider a given path of monetary disturbances ut

and fiscal shock ψt. Then,

I. There exists a unique bounded equilibrium if and only if the Taylor principle is satisfied, that is, ϕ > 1.

II. Let ît denote a given path of nominal interest rates and (x̂t, π̂t, b̂t) that satisfies the Euler equation (10),

the NKPC (12), and the government’s flow budget constraint (8). Suppose that ut = ît − ρ− ϕπ̂t such

that we can write the policy rule as

it = ît + ϕ(πt − π̂t). (25)

Then, the solution to the system (24) satisfies xt = x̂t, πt = π̂t, and bt = b̂t.

III. Consider an undisturbed Taylor rule, i.e. ut = 0, and assume ψt = ψ. Then, there is a constant inflation

rate:

πt = − θ∗Φ

1 + θ∗Φ

ψ

ϕ− 1
. (26)
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In turn, the output gap and the path of debt follow:

xt = x0 −
θ∗Φ

1 + θ∗Φ
ψt, bt = b0 +

ψ

1 + θ∗Φ
t. (27)

Proposition 4 shows that the Taylor principle is necessary and sufficient to guarantee that the

equilibrium is (locally) uniquely determined. Moreover, it shows how the monetary authority can

implement a given equilibrium by effectively adopting a time-varying inflation target, with a rule

it = ît + ϕ(πt − π̂t).9 As an example, consider the equilibrium under the output gap stabilization

policy. In this case, we want to implement an equilibrium with inflation as given in Proposition 1,

that is, the target inflation is π̂t = π̂0+
θ∗κΦ
θ+ρ ψt and π̂0 = θ∗κΦ

θ+ρ

[
b0 − bn + ψ

θ+ρ

]
. As the real rate is equal

to ρ, our target for the nominal rate is ît = ρ+ π̂t. Hence, to implement the output-gap stabilization

equilibrium the monetary authority needs to set ut = ît−ρ−ϕπ̂t = −(ϕ−1)π̂t. Therefore, a negative

disturbance to the policy rule is required to stabilize the output gap. The equilibrium under the other

two policy experiments can be implemented in a similar manner.

Notice that the equilibrium outcome in Phase II can be implemented using a similar approach by

assuming that the monetary authority follows the following policy rule in Phase II: i∗t = ρ+ϕπ∗t +u
∗
t ,

given the same Taylor coefficient ϕ > 1. Therefore, we assume that the disturbances to the Taylor

rule are regime-dependent, instead of the coefficients of the policy rule, in contrast to the literature

on regime-dependent rules (see e.g. Davig and Leeper, 2007 and Farmer, Waggoner and Zha, 2009).

Proposition 4 also shows the equilibrium implemented by a zero disturbance to the policy rule,

ut = 0 for all t ≥ 0, and a constant fiscal shock ψt = ψ. Interestingly, this policy engineers a decline in

real rates, rt−ρ = − θ∗Φ
1+θ∗Φψ, which slows down the accumulation of debt. The reduction in real rates

is stronger the more likely it is the economy will switch to Phase II and the larger is the pass-through

from debt to inflation in Phase II. A higher Taylor coefficient ϕ brings inflation closer to zero, but it

does not affect the real rate or the debt dynamics.

Why does a simple Taylor rule leads to negative inflation? Suppose, for the sake of argument,

that the equilibrium inflation was positive. This implies that the real rate would also be positive, so

9For models with a time-varying inflation target see e.g. Ireland (2007) and Cogley and Sbordone (2008).
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both government debt and output gap increase over time, creating an upward pressure on inflation.

However, higher inflation would lead to higher real rates and even faster increase in output gap and

government debt. Inflation would spiral out of control, which is inconsistent with the assumption of

a bounded solution. In contrast, it is possible to find a stable outcome with a constant deflation. The

output gap decreases over time, while debt increases over time, as the low real rate is not enough

to offset the effect of the fiscal expansion. The opposite behavior of the output gap and government

debt allows for a stable solution.

4. Soft landing

An important question in the recent inflationary episode following the Covid-19 pandemic regarded

the possibility of a soft landing, that is, a reduction in inflation without a substantial cost in terms

of output or employment. In this section, we study the necessary conditions to achieve a soft land-

ing. We find that expectations effects, from both households and firms, play a significant role in

determining whether such an outcome is possible.

4.1 The analytics of soft landing

To capture the idea of a soft landing in a simple way, we say that the monetary authority achieves a

soft landing if it is able to reduce inflation while it keeps the output gap constant. Though assuming a

constant output gap is certainly an extreme assumption, it enable us to isolate the inflation dynamics

caused by expectation effects from the standard response to changes in the output gap.

The challenge of a soft landing. Consider first the case of the standard New Keynesian model. In

this case, disinflation is tightly connected to a reduction in output gaps. For instance, suppose that

the output gap is exponentially decaying, xt = e−θxtx0, x0 > 0. A constant output gap corresponds

to θx = 0. In the standard model, the change in inflation is given by

π̇t = ρπt − κxt = −θxπt, (28)
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using πt = κ xt
ρ+θx

. In this case, disinflation, π̇t < 0, requires a declining output gap, θx > 0. A

constant output gap would lead to constant inflation. The model delivers no soft landing.

Consider next the model discussed in Section 3. It turns out that a soft landing is also not pos-

sible in that case. From the discussion of the output-gap stabilization experiment in Section 3.1, a

constant output gap would cause a trend in inflation, given our assumption that the fiscal expansion

is permanent as long as the economy stays in Phase I. We show next that the same is true even in the

case the fiscal expansion is temporary.

Suppose that fiscal transfers are exponentially decaying, i.e., ψt = e−θψtψ0. The case discussed

in Section 3 corresponds to θψ = 0. Given a constant output gap, the real rate is equal to ρ, so the

government debt is given by

ḃt = ψt ⇒ bt = b0 +
1− e−θψt

θψ
ψ0. (29)

Government debt has now a well-defined long-run level in Phase I, blr = b0 +
ψ0

θψ
> b0. Moreover,

government debt monotonically increases towards this higher long-run level: bt = blr − 1
θψ
ψt.

From the NKPC, we obtain the inflation rate:

πt =
κ

ρ+ θ
x0 +

θ∗κΦ

ρ+ θ
(blr − bn)− 1

θψ

θ∗κΦ

ρ+ θ + θψ
ψt. (30)

As in the output-gap stabilization experiment, inflation is increasing over time: π̇t = θ∗κΦ
ρ+θ+θψ

ψt > 0.

Inflation does not follow a linear trend, but instead converges to a higher long-run level.

This analysis shows that it is not possible to reduce inflation while keeping the output gap con-

stant. Therefore, a soft landing is also not possible in the model with expectation effects on the firm

side only.

Introducing households’ expectation effects. We consider next the general case where expectation

effects are present for households and firms. In this case, the Euler equation is given by

ẋt = rt − ρ+ θhxt − θ∗hx
J
t .
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This Euler equation deviates from the textbook one in two important ways. First, the term θhxt

captures the discounting effect of future real rates, as discussed in Section 2.2. Second, the last term

captures the effect of the jump in output gap in Phase II. From the expression for the output gap

(Equation 15) and the real rate (Equation 14) in Phase II, the jump term in the output gap is given by

xJt = bt − bn. To obtain a constant output gap, xt = x0, the following condition must be satisfied:

x0 =
θ∗h
θh

(bt − bn)− 1

θh
(rt − ρ),

assuming θh > 0. In contrast to the case of a standard Euler equation, a constant output gap does not

require rt = ρ. If government debt is time-varying, then the real rate must also be time-varying to

keep the output gap constant. This can be seen by differentiating the expression above with respect

to time:

0 =
θ∗h
θh

(rt − ρ+ ψt)−
1

θh
ṙt ⇒ ṙt = θ∗h(rt − ρ) + θ∗hψt, (31)

where we used the government’s budget constraint. For a given initial condition for the real rate, the

differential equation above implies that rt is given by

rt − ρ =

(
r0 − ρ+

θ∗hψ0

θ∗h + θψ

)
eθ

∗
ht −

θ∗h
θ∗h + θψ

ψt.

To stabilize the output gap, the monetary authority must engineer a reduction in real rates. Gov-

ernment debt is given by

ḃt =

(
r0 − ρ+

θ∗hψ0

θ∗h + θψ

)
eθ

∗
ht−

θ∗h
θ∗h + θψ

ψt+ψt ⇒ bt = b0+

(
r0 − ρ+

θ∗hψ0

θ∗h + θψ

)
eθ

∗
ht − 1

θ∗h
+
1− e−θψt

θ∗h + θψ
ψ0.

Hence, for r0 sufficiently low, government debt is decreasing over time.

Finally, inflation is given by

πt =
κ

ρ+ θf
x0 +

θ∗fΦ

θ∗h

θhx0 +
(
r0 − ρ+

θ∗hψ0

θ∗h+θψ

)
eθ

∗
ht

(θ∗h + θψ)(ρ+ θf − θ∗h)
− ψt

(θ∗h + θψ)(ρ+ θf )

 ,
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where x0 =
θ∗h
θh
(b0 − bn)− 1

θh
(r0 − ρ), and we assumed ρ+ θf > θ∗h.

Notice that as the output gap is constant, inflation dynamics is driven by the jump inflation term.

The next proposition provides the necessary conditions for a soft landing.

Proposition 5 (Soft landing). Suppose 0 < θ∗h < ρ + θf and the real interest rate satisfies the differential

equation (31). If r0 − ρ < − θ∗hψ0

θ∗h+θψ
, then the output gap is constant and inflation is eventually decreasing. If

r0 is sufficiently low, inflation is decreasing for all t ≥ 0.

To achieve a soft landing, a monetary authority must be able to reduce inflation while it maintains

the output gap constant. In this case, the reduction in inflation comes exclusively from the jump term.

Therefore, real rates must be sufficiently low to bring government debt back to its sustainable level.

The reduction in government debt implies that the jump on the output gap also declines over time.

Hence, to offset the second term in Equation (11), the real rate must be declining over time. As the

present discounted value of jump terms decline over time, the present discounted value of real rates

(in absolute value) increases over time, keeping the output gap constant. Expectations effects are

crucial to obtain this result. If we were to assume θh = 0, then ẋt = rt − ρ (recall θh = 0 implies

θ∗h = 0) and low rates would cause a declining output gap.

Households’ expectations of monetary accommodation, θ∗h, control how fast real rates must de-

cline, with real rates declining at a slower pace for a smaller θ∗h. In the limit θ∗h → 0, so households

believe that the fiscal expansion will be fully resolved by higher future taxes, a soft landing is pos-

sible with a constant (negative) real rate. In this case, the present discounted value of real rates is

obviously constant, and a negative rate brings down the government debt and jump inflation.

4.2 Disinflation and expectation effects

The possibility of a soft landing illustrates that expectations effects may play a significant role in

explaining inflation dynamics in contrast to contemporaneous changes in the output gap. But how

important are these expectations effects empirically? Recent evidence suggests these effect may be

quite important. Hazell, Herreno, Nakamura and Steinsson (2022) provide evidence that the slope

of the Phillips curve is relatively small, and it has been since the 1980s. This indicates that even
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substantial changes in the output gap may have limited impact on inflation. Moreover, they argue

that (transitory) deviations of unemployment from its natural level played a minor role during the

Volcker disinflation, with expectation effects explaining the bulk of the change in inflation during

that episode.10

Hazell et al. (2022) consider a formulation of the NKPC where inflation depends on the present

discounted value of the temporary component on unemployment gaps and a term capturing long-

term inflation expectations. Our formulation differ from theirs in two important ways. First, given

that the economy eventually moves to Phase II or to the steady state with full fiscal support with

probability one, long-run inflation expectations are anchored in our economy. Our expectation effects

capture short- and medium-run expectations. Second, fluctuations in inflation expectations in their

setting are tied to permanent changes in the output gap.

In our setting, are not linked to permanent deviations of output gap or interest rates from its

natural level, instead expectation effects are a function of the debt gap bt−bn. We have focused so far

in the case where the natural level of debt is constant and expectation effects are entirely driven by

movements in government debt. But this does need to be the case. Suppose that rt = ρ and ψt = 0,

such that government debt is constant. Let’s assume that the natural level of debt, the amount that is

fully backed by future taxes, is potentially time varying. In particular, suppose that bnt = (1 − ωt)b0,

so a fraction ωt of the current level of debt is expected to be wiped out by low rates in Phase II.

The next proposition characterizes the response of inflation to changes in the natural level of debt.

Proposition 6 (Time-varying natural level of debt). Suppose rt = ρ, ψt = 0, bnt = (1 − ωt)b0, where

ωt = ω0 + ω1e
−θωt. Then, the inflation rate is given by

πt = πlr +

[
θ∗h

θh + θω
+ θ∗fΦ

]
κω1e

−θωtb0
ρ+ θf + θω

,

where the long-run level of inflation πlr is given by

πlr ≡
[
θ∗h
θh

+ θ∗fΦ

]
κω0b0
ρ+ θf

. (32)

10See also Goodfriend and King (2005) and Bianchi and Ilut (2017) for a related view on the Volcker disinflation.
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Proposition 6 shows how fluctuations in the natural level of debt affect inflation. Deviations

of debt from its natural level may lead to persistent effects on inflation (conditional on staying in

Phase I). The effect on inflation is increasing in the long-run fraction of debt that is unbacked, ω0, the

probability of switching to Phase II perceived by households and firms, θ∗h and θ∗f , and it decreasing

in the probability of fiscal adjustment perceived by households and firms, θh and θf . Similarly,

the temporary component in the fraction of debt that is unbacked affects inflation. A decline in ωt

reduces inflation even if bt is constant.

4.3 The perils of Taylor rules redux

As discussed above, households’ expectation effects create the possibility of achieving a soft landing.

However, they also open the door for adverse outcomes when the monetary authority follows an

undisturbed Taylor rule, especially when households regard to be unlikely that a fiscal expansion

will be followed by higher future taxes.

We focus on the case θh = 0, so households regard the case of a fiscal adjustment without mon-

etary support unlikely. We interpret this case as capturing the dynamics in developing economies

with a history of inflation problems and weak fiscal institutions. One may also assume that θf = 0,

but this is not essential for the results that follow.

Proposition 4 showed that there is a unique bounded equilibrium when the Taylor principle is

satisfied for the case without households’ expectation effects. The next proposition shows that such

effects have profound implications for the equilibrium dynamics.

Proposition 7 (Instability under the Taylor principle). Suppose θh = 0 and θ∗h > 0. Then, generically

there exists no bounded solution to the equilibrium conditions when ϕ > 1. There exists a unique bounded

equilibrium when ϕ < 1.

Proposition 7 shows a new form of instability generated by a Taylor rule. Benhabib, Schmitt-

Grohé and Uribe (2001) has famously shown that a Taylor rule can generate instability through self-

fulfilling fluctuations. Here we highlight a different form of instability, where a policy rule satisfying

the Taylor principle causes all bounded equilibria to cease to exist. Formally, we show in the ap-
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pendix that a version of the dynamic system (24) with θ∗h > 0 has three positive eigenvalues. This

implies that for an arbitrary initial condition for debt the system is unstable. The instability holds

only generically as there is a unique value of b0 that delivers a bounded solution. This value depends

on the entire sequence of shocks ψt, while b0 is predetermined, so typically there is no mechanism to

ensure that b0 jumps to the value that leads to the stable path.

The instability emphasized here is also different from the one considered by Leeper (1991), and

explored by Loyo (1999) to explain the Brazilian hyper-inflation, who considered a case of a simul-

taneous active monetary and active fiscal regimes. Leeper (1991) shows that there is no bounded

solution when both the monetary and fiscal authorities are active and there is no discounting in the

Euler equation. In contrast, we focus on the case where the fiscal authority is passive and there is

discounting in the Euler equation.11 The instability in our case comes from the interaction of the

monetary rule with expectations effects.

Interestingly, there is no instability when ϕ < 1. In particular, there is a unique bounded equi-

librium even under an interest rate peg, ϕ = 0. It has been already shown in the literature that

discounting in the Euler equation, if strong enough, can cause even an interest rate peg to be deter-

mined (see e.g. Acharya and Dogra 2020). In that setting, a policy rule satisfying the Taylor principle

is not necessary for determinacy, but it does not create instability if adopted. In our setting, we have

a combination of a discounted Euler equation with a jump term on the output gap, which leads to

determinacy under an interest rate peg for θ∗h > 0, even if arbitrarily small. Moreover, the fact that

government debt is a relevant state variable implies that the system can be ”over-determined,” with

more positive eigenvalues in the dynamic system than jump variables. This implies that the system

will be unstable for nearly all initial conditions for debt.

Intuitively, the instability can be traced back to the feedback loop inflation, real rates, and govern-

ment debt. High inflation causes the monetary authority to raise rates more than one-to-one, raising

real rates. Higher rates pushes up government debt, raising jump inflation and jump output gap,

which puts more pressure on inflation.

11To see that the fiscal policy is passive, let τt = Tt−T
B

denote the deviations of transfers from steady state and assume
the rule τt = −γbt+ψt, so debt dynamics is given by ḃt = rt−ρ+(ρ−γ)bt+ψt. The case ρ−γ > 0 corresponds to active
fiscal policy, while we assume that γ = ρ.
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5. Optimal Policy During Phase I

We now study optimal monetary policy during Phase I. We focus on the case θ = 0. We consider the

following welfare-loss objective function for the government:

P = −1

2
E
[∫ τ

0
exp (−ρt)

(
π2t + αx2t

)
dt+

∫ τ+T

τ
exp (−ρt)

(
π∗2t + αx∗2t

)
dt

]

where τ is the random time of arrival of Phase II. Clearly, since after T the economy is at its steady-

state value, the loss only considers losses up to T periods since the start of the reform.

Notation. We define the following auxiliary functions:

Lξ0 (t1, t2) ≡
∫ t2

t1

exp (−ξt) dt, Lξ1 (t1, t2) ≡
∫ t2

t1

exp (−ξt) tdt, Lξ2 (t1, t2) ≡
∫ t2

t1

exp (−ξt) t2dt.

We suppress the arguments when referring to the infinite integration:

Lξ0 ≡
∫ ∞

0
exp (−ξt) dt, Lξ1 ≡

∫ ∞

0
exp (−ξt) tdt, Lξ2 ≡

∫ ∞

0
exp (−ξt) t2dt.

These functions and constants appear multiple times in this section. Their properties are character-

ized in Appendix B.

Value of Phase II. Consider the value of Phase II, once we have arrived at that phase:

PII (b∗0) =

∫ T

0
exp (−ρt)

(
π∗2t + αx∗2t

)
dt.

The following Lemma shows that this value is quadratic in the value of debt in that state:

Lemma 2. The value of Stage II given vt is:

PII (Bt) = ΥT (bt − bn)2 ,
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where ΥT ≡
(
αΓT (0) + κ2ΦT

)
and Υ and ΓT (t) are given by:

ΦT ≡
∫ T

0
exp (−ρs) Γ (s, T )2 ds and ΓT (t) ≡

∫ T

t
exp (−ρs)

(
1− s

T

)2
ds.

While the objective function only encompasses inflation and the output gap, notice how deviation

of the debt level relative to its neutral value, ultimately summarize square losses. The value enters

into the objective of Phase I. The term κ2ΦT captures the cost of inflation in Phase II whereas ΓT (0)

captures the cost in terms of the output gap. All in all, ΥT captures the overall cost of arriving at

Phase II with debt different than the neutral debt level. It is a term related to ΨT which captures the

effect on expected inflation prior to the reform.

Optimal Policy Absent Shocks. Thus, the Phase I value function solves:

P = −1

2
E
[∫ τ

0
exp (−ρt)

(
π2t + αx2t

)
dτ + exp (−ρτ)PII (bτ )

]
,

Using the fact that Phase II arrives as a Poisson event, and replacing the value of Phase II, we obtain

that the value in phase I can be written as:

Lemma 3. The value of Stage I is:

P = −1

2
max
{π0,rt}

∫ ∞

0
exp (− (θ + ρ) t)

(
π2t + αx2t + θΥT (bt − bn)2

)
dt

subject to the equilibrium system:

π̇ = (θ + ρ)πt − κxt − θπJt ; ẋt = rt − ρ; ḃt = rt.

The overall objective is akin to the standard losses that emerge in a new-Keynesian model, except

that it also quadratic in the level of debt. The quadratic structure is convenient to exploit the linear-

quadratic structure of the problem. To simplify the constraint set, we directly work with the output
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gap as a control and relate the path of log debt (bt) to the path of the output gap noticing that:

bt = b0 + xt − x0 + ρt⇐⇒ xt = x0 + bt − b0 − ρt.

Recall also that jump inflation is given by (16), and hence:

πJt = κΨT (bt − bn) .

Therefore, taking these observations into consideration, we arrive at a simplified problem where the

planner chooses a path for the real interest rate.

Lemma 4. The planner problem in Stage I is given by the following program:

P = −1

2
max
{π0,rt}

∫ ∞

0
exp (− (θ + ρ) t)

(
π2t + α (x0 + bt − b0 − ρt)2 + θκΥ(T ) (bt − bn)2

)
dt

subject to:

π̇ = (θ + ρ)πt − κ (x0 + bt − b0 − ρt)− θκΨT (bt − bn) .

b0 given.

This simplified problem now casts the entire objective into a maximization problem where the

control variable is the real interest rate and an initial condition for inflation. The control problem is

subject to a single differential constraint: the Phillips curve.

In turn, the following Lemma shows that the problem can be summarized as choosing a set of

linear trends for inflation, the output gap, and debt together with their initial conditions:

Lemma 5. The optimal inflation, output, and debt are affine functions of time:

πt = cπ0 + cπ1 t, xt = cx0 + cx1t, bt = b0 + cb1t.
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where the coefficients satisfy the following relationship:

(Euler) cx1 = cb1 − ρ

(Phillips Curve I) cx1 =
θ + ρ

κ+ θκΨT
cπ1 − ρ

θκΨT

κ+ θκΨT

(Phillips Curve II) ρcπ0 = κcx0 + cπ1 + ρκΨT (b0 − bn)

Moreover, cx1 = r∗ has the interpretation of a constant real interest rate and cπ0 = π0 the initial level of

inflation.

The problem boils down to the choice of a number of scalars, which in turn are linked through the

dynamic equations of the system. Because the system is affine, we can express the objective function

in terms of a solution to a static quadratic problem in {π0, r∗}. As a result the objective solves a

quadratic equation.

Lemma 6. The value of Stage I is:

P = min
{π0,r∗}

∫ ∞

0
exp (− (θ + ρ) t)

(
(cπ0 + cπ1 t)

2 + α (cx0 + cx1t)
2 + θκΥT

(
b0 − bb + cb1t

)2)
dt

where:

(Euler - Trend) cx1 = cb1 − ρ

(Phillips Curve - Trend) cx1 =
θ + ρ

κ+ θκΨT
cπ1 − ρ

θκΨT

κ+ θκΨT

(Phillips Curve - Constant term) ρcπ0 = κcx0 + cπ1 + ρκΨT (b0 − bn)

and cπ0 = π0 and r∗ = cx1 .

By substituting the constraints and integrating the terms corresponding to t and t2 we arrive at

static quadratic objective in {π0, r∗}. This objective yields the optimal solution. Next, we present the

key result: the optimal real interest rate target.
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Proposition 8 (Optimal Real Rate). The optimal time zero inflation and real interest rates are: π0 = 0 and

r∗ = ρ−

(
κ2
(
θΨT

(
ρ
θ+ρ

)
1+θΨT

θ+ρ

)
+ βρ

)
L2 + βcb0L1 + αθΨT

(
ρ
θ+ρ − cb0

)(
1+θΨT

θ+ρ L0 + L1

)
((

κ1+θΨT

θ+ρ

)2
+ α+ β

)
L2 − 2α

(
1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0

.

The real interest is implemented through a rule where deviations from the trend in inflation are

punished. The required equilibrium rate is:

it = r∗ − cπ1 t.

Thus, even though real rates are constant, nominal rates also trend. It is useful to verify some bench-

marks. For example, if θ = 0, we obtain r∗ = ρ.

For simplicity, let’s assume that the central bank only cares about the cost of inflation, α = 0, and

cb0 = 0. Then, the optimal rule simplifies to:

r∗ = ρ

1−
θΨT

1+θΨT

(
κ1+θΨT

θ+ρ

)2
+ β(

κ1+θΨT

θ+ρ

)2
+ β

 .

In this case, the central bank maintains a real-interest rate below the natural rate of interest, showing

that the central bank weights the contemporaneous effect on inflation with the overall effect that debt

has on inflation. As θ approaches infinity, the term converges to:

r∗ = ρ

( (
ΨT
)2

(ΨT )2 + (ΦT )2

)
.

This is a weighted average of the ex-ante and ex-post cost.

The example shows that with an expectation of a fiscal reform, attempts to curtail inflation have

undesired effects. Any initial increase in rates eventually leads to higher inflation, unlike the canon-

ical new-Keynesian model.

Figure 5 shows the welfare implications of different target real-interest rates, r∗. How far is r∗

from ρ depends on the intensity of a reform. For values of 0.04, implying a reform whose time
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Figure 5: Welfare for Different Policy Rules

Note: Red lines correspond to reform paths that occur at different points in time.

will occur in approximately 25 years, the optimal rate is substantially below the Taylor rules that

eliminate the output gap (section 2.1) or the standard rule (section 2.3). The optimal rate allow for a

lower rate that eases the growth in the path of debt. The sacrifice comes at the expense of allowing

either inflation or the output gap to feature a trend.

6. Conclusion

We have presented a few lessons immediately derived from the model in this paper. First, we

demonstrated that in an environment where a fiscal reform is expected to occur, we have shown

that attempts to fight inflation backfire through the expectation of greater inflation when the reforms

takes place. We called this phenomenon, sticky inflation. Second, we should that because inflation

is sticky, optimal policy that cannot guarantee immunity against a forced reform, should balance a

trend in inflation with a trend in debt, keeping real interest rates below the natural rate until the

reform takes place.
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Several policy lessons follow indirectly from the model. First, if a fiscal-monetary reform will

happen, it is better to have the reform earlier than later. Second, we have not considered the pos-

sibility that earlier attempts to fight inflation are designed to signal that monetary policy will not

finance deficits in the future. We have shown that these attempts are futile in bringing inflation back

if the signalling effect is not present. Thus, it is important to understand how inflation medium term

inflation expectations respond to the signalling effect and to the fiscal effect.

Finally, because the model features trends in inflation or the output gap as outcomes, we consider

that an analysis of the non-linear dynamics would be desirable.
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A. Derivation for Section 2

Households. The household problem is given by

Vt(Bt) = max
[Cs,Ns]s≥t

Et

[∫ t∗

t

e−ρ(s−t) [u(Cs)− h(Ns)] dt+ e−ρtV ∗
t∗(B

∗
t )

]
, (33)

subject to

Ḃt = (it − πt)Bt +
Wt

Pt
Nt +Dt + Tt − Ct, (34)

and a No-Ponzi condition, where t∗ denotes the arrival time for a Poisson process with intensity θ ≥ 0, Bt
denotes the real valued of bonds held by households, Wt is the nominal wage, Pt is the price level, Dt are
dividends payed by firms, Tt denotes fiscal transfers.

The HJB equation for this problem is given by

ρV = u(C)− h(N) + V̇ + VB

[
(i− π)B +

W

P
N + T − C

]
+ θ[V ∗ − V ]. (35)

The first-order conditions are given by

u′(C) = VB , h′(N) = VB
W

P
. (36)

The envelope condition is given by

ρVB = VB(i− π)V̇B + VBB

[
(i− π)B +

W

P
N + T − C

]
+ θ[V ∗

B − VB ]. (37)

Combining the envelope condition with the optimality condition for consumption, we obtain

0 = (i− π − ρ) +
u′′(C)C

C

Ċt
Ct

+ θ

[
u′(C∗)

u′(C)
− 1

]
⇒ Ċ

C
= σ−1(i− π − ρ) +

θ

σ

[
u′(C∗)

u′(C)
− 1

]
, (38)

where σ = −u′′(C)C
u′(C) .

The optimality condition for labor can be written as

h′(N)

u′(C)
=
W

P
. (39)

Firms. There are two types of firms in the economy: final-goods producers and intermediate-goods produc-

ers. Final goods are produced by competitive firms according to the production function Yt =
(∫ 1

0
Y

ϵ
ϵ−1

i,t di
) ϵ−1

ϵ

,
where Yi,t denotes the output of intermediate i ∈ [0, 1]. The demand for intermediate i is given by Yi,t =(
Pi,t
Pt

)−ϵ
Yt, where Pi,t is the price of intermediate i, Pt =

(∫ 1

0
P 1−ϵ
i,t di

) 1
1−ϵ

is the price level, and Yt is the
aggregate output.

Intermediate-goods producers have monopoly over their variety and operate the technology Yi,t = AtNi,t,
where Ni,t denotes labor input. Firms are subject to quadratic adjustment costs on price changes, so the
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problem of intermediate i is given by

Qi,t(Pi) = max
[πi,s]s≥t

Et

[∫ t∗

t

ηs
ηt

(
Pi,s
Pi,t

Yi,s −
Ws

Ps

Yi,s
As

− φ

2
π2
i,s

)
ds+

ηt∗

ηt
Q∗
i,t(P

∗
i,t)

]
, (40)

subject to Yi,t =
(
Pi,t
Pt

)−ϵ
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi and ηt = e−ρtu′(Ct), where φ is the adjustment

cost parameter.
The HJB equation for this problem is

0 = max
πi,t

ηt

(
Pi,t
Pt

Yi,t −
Wt

Pt

Yi,t
A

− φ

2
π2
i,t

)
dt+ Et[d(ηtQi,t)], (41)

where Et[d(ηtQi,t)]
ηtdt

= −(it − πt)Qi,t +
∂Qi,t
∂Pi,t

πi,tPi,t +
∂Qi,t
∂t + θ

η∗t
ηt

[
Q∗
i,t −Qi,t

]
.

The first-order condition is given by
∂Qi,t
∂Pi

Pi,t = φπi,t.

The change in πt conditional on no switching in state is then given by(
∂2Qi,t
∂t∂Pi

+
∂2Qi,t
∂P 2

i

πi,tPi,t

)
Pi,t +

∂Qi,t
∂Pi

πi,tPi,t = φπ̇i,t. (42)

The envelope condition with respect to Pi,t is given by

0 =

(
(1− ϵ)

Pi,t
Pt

+ ϵ
Wt

PtA

)(
Pi,t
Pt

)−ϵ
Yt
Pi,t

+
∂2Qi,t
∂t∂Pi

+
∂2Qi,t
∂P 2

i

πi,tPi,t+

∂Qi,t
∂Pi

πi,t − (it − πt)
∂Qi,t
∂Pi

+ θ
η∗t
ηt

(
∂Q∗

i,t

∂Pi
− ∂Qi,t

∂Pi

)
. (43)

Multiplying the expression above by Pi,t and using Equation (42), we obtain

0 =

(
(1− ϵ)

Pi,t
Pt

+ ϵ
Wt

PtA

)(
Pi,t
Pt

)−ϵ

Yt + φπ̇t − (it − πt)φπi,t + θφ
η∗t
ηt

(
π∗
i,t − πi,t

)
.

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips curve

π̇t = (it − πt)πt + θ
η∗

ηt
(πt − π∗

t )−
ϵφ−1

A

(
Wt

Pt
− (1− ϵ−1)A

)
Yt.

Government and market clearing. The government flow budget constraint is given by

Ḃgt = (it − πt)B
g
t + Tt, (44)

where Bgt denotes the real value of government debt. The government must also satisfy the No-Ponzi condi-
tion limT→∞ Et[ηTBgT ] = 0.

The market clearing condition is given by

Ct = Yt, Nt =

∫ 1

0

Ni,tdi, Bt = Bgt . (45)
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B. Useful Integrals

Time Discounting. We define some useful formulas related to some integral terms the re-appear in the
body of the paper. The level-zero integral of time discounting is:∫

exp (−ρs) ds = −exp (−ρs)
ρ

.

Thus, define it’s indefinite form by:

L0 (ρ, t1, t2) ≡
∫ t2

t1

exp (−ρs) ds = exp (−ρt1)− exp (−ρt2)
ρ

.

For the infinite integral we use:

L0 (ρ) ≡
∫ ∞

0

exp (−ρs) ds = 1

ρ
.

In addition:
L0 (ρ, t1,∞) = exp (−ρt1)L0 (ρ) .

Linear-Time Discounting. The time discounting of linear time is:∫
exp (−ρs) sds = −exp (−ρs) (ρs+ 1)

ρ2
.

Thus, it definite form is:

L1 (ρ, t1, t2) ≡
∫ t2

t1

exp (−ρs) sds = exp (−ρt1) (ρt1 + 1)− exp (−ρt2) (ρt2 + 1)

ρ2
.

For the infinite integral we use:

L1 (ρ) ≡
∫ ∞

0

exp (−ρs) ds = 1

ρ2
.

In addition:

L1 (ρ, t1,∞) = exp (−ρt1)
(
L0 (ρ, 0,∞) t1 + L1 (ρ, 0,∞)

)
= L0 (ρ, t1,∞) t1 + L1 (ρ, 0,∞)

Quadratic Time. The time discounting of quadratic time is:∫
exp (−ρs) s2ds = −

exp (−ρs)
(
ρ2s2 + 2ρs+ 2

)
ρ3

.

Thus, the definite form is:

L2 (ρ, t1, t2) ≡
∫ T

0

exp (−ρs) s2ds

=
exp (−ρt1)

(
ρ2 (t1)

2
+ 2ρt1 + 2

)
− exp (−ρt2)

(
ρ2 (t1)

2
+ 2ρt2 + 2

)
ρ3

.
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Thus, the integrals of the form:

=

∫ ∞

0

exp (−ρs) s2ds = 2

ρ3
.

The Integral ΨT . This is useful to compute ΨT and bound this value. This term is related to:

ΨT =
1

T

∫ T

0

exp (−ρs) (T − s) ds

= L0 (ρ, 0, T )− 1

T
L1 (ρ, 0, T )

=
1− exp (−ρT )

ρ
+

1

T

exp (−ρT ) (ρT + 1)− 1

ρ2

=
1

ρ

(
1− 1− exp (−ρT )

Tρ

)
.

The limits require use to use L’Hospital’s rule:

lim
T→0

ΨT =
1

ρ

(
1− lim

T→0

ρ exp (−ρT )
ρ

)
= 0.

and

lim
T→∞

ΨT =
1

ρ

(
1− lim

T→∞

ρ exp (−ρT )
ρ

)
=

1

ρ
.

Furthermore, the term:

1− 1− exp (−ρT )
ρT

< 1

since:
1− ρT < exp (−ρT ) ,

which follows from the convexity of the exponential. Thus, ΨT ∈ [0, ρ].

C. Proofs of Section ?? Results

C.1 Proofs in Section ??

Proof of Proposition 1.

Proof.

πt = θ

∫ ∞

0

exp (− (ρ+ θ) z)
(
κΨT (Tρ− ln (∆/ρ) + ln (B0 exp (ρt)) + z)

)
dz

= θ

∫ ∞

0

exp (− (ρ+ θ) z)
(
κΨT (Tρ− ln (∆/ρ) + ln (B0) + z)

)
dz + κΨT θρt

∫ ∞

0

exp (− (ρ+ θ) z) dz

= π0 +
ρκΨT

T

θ

θ + ρ
t.

where the first line uses the transformation, z ≡ s− t.
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C.2 Proofs in Section 3.2

Proof of Proposition 2.

Proof. The fight-inflation strategy combats is successful at bringing inflation down if:

−Fπ0 > Jπ0 .

We can ask how the two effects scale with rf . In particular, we have that:

∂Jπ0
∂rf

= θκΨT
[∫ ∞

0

exp (− (ρ+ θ) s)min {s, T0} ds
]
,

and for the fight term:
∂Fπ0
∂rf

= κ

∫ T0

0

exp (− (ρ+ θ) s) (s− T0) ds.

Thus, as long as:
∂Jπ0
∂rf

+
∂Fπ0
∂rf

< 0,

there exits a sufficiently high level of rf such that the policy is deflationary. Breaking the integrals we need:∫ T0

0

exp (− (ρ+ θ) s) (T0 − s) ds > θΨT
[∫ ∞

0

exp (− (ρ+ θ) s)min {s, T0} ds
]

Proof of Proposition ??.

Proof. The left hand side of the condition starts at zero. It’s derivative is:

exp (− (ρ+ θ) s) (T0 − s) |s=T0 +

∫ T0

0

exp (− (ρ+ θ) s) ds > 0,

The term on the right hand side of the condition is positive at T0 = 0. It can be written as:

θΨT

[∫ T0

0

exp (− (ρ+ θ) s) sds+ T0

∫ ∞

T0

exp (− (ρ+ θ) s) ds

]
.

By Leibniz’s rule, the derivative is: ∫ ∞

T0

exp (− (ρ+ θ) s) ds,

so it’s derivative shrinks. Thus, the term in the left-hand side must be larger for T0 sufficiently large.

Proof of Proposition 3.

Sticky Inflation. The change in the jump term is

∂Jπt
∂rf

=
κθΨT

T

[∫ T0

min{t,T0}
exp (− (ρ+ θ) s) sds+ T0

∫ ∞

max{t,T0}
exp (− (ρ+ θ) s) ds

]
,
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and for the fight term:
∂Fπ0
∂rf

= κ

∫ T0

min{t,T0}
exp (− (ρ+ θ) s) sds.

and
Clearly, there always exists a t < T0 sufficiently large such that inflation comes back because there’s always

a t such that:
∂Jπt
∂rf

+
∂Fπ0
∂rf

.

This follows directly from continuity.

Proof of Proposition 4

Proof. For the general case, the dynamic system is given by
ẋt

π̇t

ḃt

 =


θh ϕ− 1 −θ∗h
−κ ρ+ θf −θ∗fκΦ

0 ϕ− 1 0



xt

πt

bt

+


ut + θ∗hb

n

θ∗fκΦb
n

ut + ψt

 (46)

The equilibrium is uniquely determined if the matrix above has two eigenvalues with positive real com-
ponents and an eigenvalue with a non-positive real component. The eigenvalues of the system above satisfies
the characteristic equation:

(θh − λ)(ρ+ θf − λ)(−λ) + θ∗hκ(ϕ− 1)− κ(ϕ− 1)λ+ (θh − λ)θ∗fΦκ(ϕ− 1) = 0 (47)

The case θh = θ∗h has a simple solution. One of the eigenvalues is given by λ3 = θh. In this case, the
remaining eigenvalues satisfy the condition:

λ1 =
ρ+ θf +

√
(ρ+ θf )2 − 4κ(ϕ− 1)(1 + θ∗fΦ)

2
, λ2 =

ρ+ θf −
√
(ρ+ θf )2 − 4κ(ϕ− 1)(1 + θ∗fΦ)

2
. (48)

These two eigenvalues have positive real part if and only if ϕ > 1. Moreover, the eigenvalues are real-valued
if ϕ < 1 +

(ρ+θf )
2

4κ(1+θ∗fΦ) . Hence, to obtain only two positive eigenvalues we must impose θh = 0. I will then focus
on this case. This allow us to reduce the order of the system by writingẋt

π̇t

 =

 0 ϕ− 1

−κ(1 + θ∗fΦ) ρ+ θf

xt
πt

+

 ut

θ∗fκΦ(b
n + x0 − b0 − ψ̂t)

 , (49)

where ψ̂t =
∫ t
0
ψsds, using the fact that bt = b0 + xt − x0 + ψ̂t. The eigenvalues of the system above are λ1 and

λ2. The matrix of eigenvectors and its inverse are given by

V =

 1 1

λ1

ϕ−1
λ2

ϕ−1

 , V −1 =
ϕ− 1

λ2 − λ1

 λ2

ϕ−1 −1

− λ1

ϕ−1 1

 . (50)

Let Zt = [xt, πt]
′, Et = [ut, θ

∗
fκΦ(b

n + x0 − b0 − ψ̂t)]
′, and A denotes the matrix of coefficients, so we can

write the dynamic system as żt = Azt + B. The eigendecomposition of A = V ΛV −1, where Λ is a diagonal
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matrix with the eigenvalues. Let zt = V −1Zt and et = V −1Et, then

żt = Λzt + et. (51)

Solving the two equations forward, we obtain

z1,t = −
∫ ∞

t

e−λ1(s−t)e1,sds, z2,t = −
∫ ∞

t

e−λ2(s−t)e2,sds. (52)

Notice that et is given by

e1,t =
λ2ut − κ(ϕ− 1)θ∗fΦ(b

n + x0 − b0 − ψ̂t)

λ2 − λ1
, e2,t =

κ(ϕ− 1)θ∗fΦ(b
n + x0 − b0 − ψ̂t)− λ1ut

λ2 − λ1
. (53)

Rotating the system back to the original coordinates, we obtain

xt = z1,t + z2,t, πt =
λ1z1,t + λ2z2,t

ϕ− 1
. (54)

The initial value for x0 satisfies the condition

x0 =

∫ ∞

0

(
λ2e

−λ1t − λ1e
−λ2t

λ1 − λ2

)
utdt+

κ(ϕ− 1)θ∗fΦ

λ1λ2
(bn+x0−b0)+

κ(ϕ− 1)θ∗fΦ

λ1 − λ2

∫ ∞

0

(
e−λ1t − e−λ2t

)
ψ̂tdt. (55)

Rearranging the expression above, using the fact that λ1λ2 = κ(ϕ− 1)(1 + θ∗fΦ), we obtain

x0 = (1+θ∗fΦ)

∫ ∞

0

(
λ2e

−λ1t − λ1e
−λ2t

λ1 − λ2

)
utdt+θ

∗
fΦ(b

n−b0)+(1+θ∗fΦ)
κ(ϕ− 1)θ∗fΦ

λ1 − λ2

∫ ∞

0

(
e−λ1t − e−λ2t

)
ψ̂tdt,

(56)
which is negative if bn ≤ b0 and ψ̂t ≥ 0.

The value of xt is given by

xt =

∫ ∞

t

(
λ2e

−λ1(s−t) − λ1e
−λ2(s−t)

λ1 − λ2

)
usds+

θ∗fΦ

1 + θ∗fΦ
(bn+x0−b0)+

κ(ϕ− 1)θ∗fΦ

λ1 − λ2

∫ ∞

t

(
e−λ1(s−t) − e−λ2(s−t)

)
ψ̂sds.

(57)
In the special case where ut = 0 and ψt = ψ, then the output gap is given by

xt = x0 −
θ∗fΦ

1 + θ∗fΦ
ψt. (58)

Inflation is given by

πt =
λ1λ2
λ1 − λ2

∫ ∞

0

(
e−λ1(s−t) − e−λ2(s−t)

) us
ϕ− 1

ds+
κ(ϕ− 1)θ∗fΦ

λ1 − λ2

∫ ∞

t

(
λ1e

−λ1(s−t) − λ2e
−λ2(s−t)

) ψ̂s
ϕ− 1

ds.

(59)

If ut = 0 and ψt = ψ, then

πt = −
θ∗fΦ

1 + θ∗fΦ

ψ

ϕ− 1
. (60)
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The real rate is given by it − πt = ρ− θ∗fΦ

1+θ∗fΦ
ψ. Government debt evolves according to

bt = b0 +
ψ

1 + θ∗fΦ
t. (61)

C.3 Proofs in Section ??

Proof of Proposition ??.

Proof. Thus, the solution to the path of debt is:

Bt = B0 exp

(
ρt+ (ϕ− 1)

∫ t

0

πsds

)
.

We can also work with
bt = lnBt

and notice that:
ḃt = rt

We can take time derivatives to the Phillips curve and write it as a second-order differential equation:

π̈t = (ρ+ θ) π̇t − κ (ẋt) + θ
(
π̇Jt
)
.

Since we already showed that:

πJt = π∗
0 (Bt) ≡ κΨT (Tρ− ln (∆/ρ) + lnBt) ,

we have that:

π̇Jt = κΨT
Ḃt
Bt

= κΨT (ρ+ (ϕ− 1)πt) .

Thus, we obtain that inflation can be written as:

π̈t = (ρ+ θ) π̇t − κ
((
1− θΨT

)
(ϕ− 1)

)
πt + θρκΨT .

As in the standard new-Keynesian model, inflation can be expressed as a second-order linear differential
equation. However, there are some differences. First, the term

(
1− θΨT

)
(ϕ− 1) modifies the the usual term

of corresponding to the Taylor principle. Even of the condition on the coefficient is the same, and (ϕ− 1)
is required for determinacy, this version, however, features inhomogeneous part given by the constant term.
Thus, even when the Taylor principle is satisfied, which is needed to avoid indeterminacy around the initial
conditions, inflation will trend.

Next, we solve for the long-term trend, using the solution trend inflation, using the method of undeter-
mined coefficients. Guess:

πt = k1 exp (λ1t) + k2 exp (λ2t) + c0

so that:
π̇t = λ1k1 exp (λ1t) + λ2k2 exp (λ2t) , π̈t = λ21k1 exp (λ1t) + λ22k2 exp (λ2t) .

Substituting the solution:
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λ21k1 exp (λ1t)+λ
2
2k2 exp (λ2t) = (ρ+ θ) (λ1k1 exp (λ1t) + λ2k2 exp (λ2t))−κ

((
1− θΨT

)
(ϕ− 1)

)
(k1 exp (λ1t) + k2 exp (λ2t) + c0)+θκΨ

T .

Thus, grouping terms we obtain:

c0 =
θκΨT

κ ((1− θΨT ) (ϕ− 1))
.

The term associated with exp (λ1t) solves the following:

λ21 = (ρ+ θ)λ1 − κ
((
1− θΨT

)
(ϕ− 1)

)
kt

and finally the terms associated with k2 exp (λ2t) solves the same condition. The corresponding roots are:

{λ1, λ1} =
1

2

(
(ρ+ θ)±

√
(ρ+ θ)

2 − 4κ ((1− θΨT ) (ϕ− 1))

)
.

Both roots are explosive implies determinacy. In this case, we need that:(
1− θΨT

)
(ϕ− 1) > 0.

They Taylor principle may be reversed provided that

1 < θΨT .

In addition, we obtain that there is trend inflation, even if the conditions for stability are met.

πt =
θΨT

((1− θΨT ) (ϕ− 1))
.

alternative proof. Alternative proof using relation between bt and xt. Notice that:

ḃt = rt

Thus:
ẋt = rt − ρ.

Therefore:
xt = bt + x0 − b0 − ρt.

However, ∫ t

0

rsds = (ϕ− 1)

∫ t

0

πsds+ ρt.

Thus:

bt = b0 + (ϕ− 1)

∫ t

0

πsds+ ρt

and

xt = (ϕ− 1)

∫ t

0

πsds+ x0.

We can take time derivatives to the Phillips curve and write it as a second-order differential equation:

π̈t = (ρ+ θ) π̇t − κ (ẋt) + θ
(
π̇Jt
)
.
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Since we already showed that:

πJt = π∗
0 (Bt) ≡ κΨT (Tρ− ln (∆/ρ) + bt) ,

we have that:

π̇Jt = κΨT
Ḃt
Bt

= κΨT (ρ+ (ϕ− 1)πt) .

Thus, we obtain that inflation can be written as:

π̈t = (ρ+ θ) π̇t − κ
((
1− θΨT

)
(ϕ− 1)

)
πt + θρκΨT .

As in the standard new-Keynesian model, inflation can be expressed as a second-order linear differential
equation. However, there are some differences. First, the term

(
1− θΨT

)
(ϕ− 1) modifies the the usual term

of corresponding to the Taylor principle. Even of the condition on the coefficient is the same, and (ϕ− 1)
is required for determinacy, this version, however, features inhomogeneous part given by the constant term.
Thus, even when the Taylor principle is satisfied, which is needed to avoid indeterminacy around the initial
conditions, inflation will trend.

Next, we solve for the long-term trend, using the solution trend inflation, using the method of undeter-
mined coefficients. Guess:

πt = k1 exp (λ1t) + k2 exp (λ2t) + c0

so that:
π̇t = λ1k1 exp (λ1t) + λ2k2 exp (λ2t) + c1, π̈t = λ21k1 exp (λ1t) + λ22k2 exp (λ2t) .

Substituting the solution:

λ21k1 exp (λ1t)+λ
2
2k2 exp (λ2t) = (ρ+ θ) (λ1k1 exp (λ1t) + λ2k2 exp (λ2t))−κ

((
1− θΨT

)
(ϕ− 1)

)
(k1 exp (λ1t) + k2 exp (λ2t) + c0)+θκΨ

T .

Thus, grouping terms we obtain:

c0 =
θκΨT

κ ((1− θΨT ) (ϕ− 1))
.

The term associated with exp (λ1t) solves the following:

λ21 = (ρ+ θ)λ1 − κ
((
1− θΨT

)
(ϕ− 1)

)
kt

and finally the terms associated with k2 exp (λ2t) solves the same condition. The corresponding roots are:

{λ1, λ1} =
1

2

(
(ρ+ θ)±

√
(ρ+ θ)

2 − 4κ ((1− θΨT ) (ϕ− 1))

)
.

Both roots are explosive implies determinacy. In this case, we need that:(
1− θΨT

)
(ϕ− 1) > 0.

They Taylor principle may be reversed provided that

1 < θΨT .

Thus, in that case, non-explosive roots require {k1, k2} = 0 and thus, inflation is given by the constant:

πt =
θΨT

(1− θΨT ) (ϕ− 1)
.
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Next, we verify the path for the output gap and debt. For the output gap:

ẋt = (ϕ− 1)πt =
θΨT

1− θΨT
.

Thus, the output gap trends upward:

xt = x0 +
θΨT

1− θΨT
t.

In turn, the path for debt follows:

bt = xt − x0 + b0 + ρt = b0 +
θΨT + ρ

(
1− θΨT

)
1− θΨT

t.

D. Proofs for Section 5 Results

Proof of Proposition 2.

Stage II Value. In Phase II, we showed that:

r∗ = ln (B∗
ss/B

∗
0) /T = ln (∆/ρ/B∗

0) /T

x∗t = (r∗ − ρ) (t− T ) , t ∈ [0, T ]

π∗
t = (r∗ − ρ)κ

∫ T

t

exp (−ρ (s− t)) (s− T ) ds.

Solving for ∫ T

0

exp (−ρt)αx∗2t dt = α (r∗ − ρ)
2
Γ (0, T )

where Γ (t, T ) ≡
∫ T
t
exp (−ρs) (T − s)

2
dt. In turn:∫ T

0

exp (−ρt)π∗2
t dt = κ2 (r∗ − ρ)

2
Υ(T ) .

Υ(T ) ≡
∫ T

0

exp (−ρs) Γ (s, T )
2
ds.

Thus, we can write:

PII (B∗
0) = (r∗ − ρ)

2 (
αΓ (0, T ) + κ2Υ(T )

)
.

Hence:
PII (Bt) = ((ln (∆/ρ)− ln (Bt)) /T − ρ)

2 (
αΓ (0, T ) + κ2Υ(T )

)
.

Proof of Proposition 3.
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Objective Function. Using the density of a Poisson event θ exp (−θτ) we can write the objective as:

P =

∫ ∞

0

θ exp (−θτ)
∫ τ

0

exp (−ρt)
(
π2
t + αx2t

)
dtdτ + θ exp (− (ρ+ θ) τ)PII (Bτ ) dτ

...
apply Leibnitz’s rule to obtain that the first term is:∫ ∞

0

θ exp (−θτ)
∫ τ

0

exp (−ρt)
(
π2
t + αx2t

)
dtdτ = − exp (−θτ)

∫ τ

0

exp (−ρt)
(
π2
t + αx2t

)
dt|∞τ=0+exp (−θτ) exp (−ρτ)

(
π2
τ + αx2τ

)
|∞τ=0 = exp (− (ρ+ θ) τ)

(
π2
τ + αx2τ

)
.

Thus, the objective is:

P =

∫ ∞

0

exp (− (θ + ρ) t)
((
π2
t + αx2t

)
+ θPII (Bt)

)
dt.

We setup a Hamiltonian:

P = max
{rt}

∫ ∞

0

exp (− (θ + ρ) t)
((
π2
t + αx2t

)
+ θPII (Bt)

)
dt

subject to:
π̇ = (θ + ρ)πt − κxt − θπJt

ẋt = rt − ρ

Ḃt = rtBt.

There are two differences with a standard new-Keynesian optimization. First, jump inflation depends on debt.
Second, the value of debt is there. Three states and one control variable. It is easier to work with the logarithm
of Bt since in that case, the objective is entirely linear quadratic. In that case...

Proof of Proposition 7.

Hamiltonian System. The optimization conditions for the system are:

Hb = 0, Hπ = −λ̇πt .

Therefore, we have:

(Hb = 0) : α (x0 + bt − b0 − ρt)− θ ((ln (∆/ρ)− bt) /T − ρ)Υ (T ) /T = λπt κ
(
1 + θΨT

)
.

Thus, the system is augment by the effect on debt. The system provides a linear relation between the co-state
and control, debt.

Next have that: (
Hπ = −λ̇πt

)
: πt (θ + ρ) + λπt = −λ̇πt .

Finally, the system is closed with the Phillips curve:

π̇t = (θ + ρ)πt − κ (x0 + bt − b0 − ρt)− θκΨT (Tρ− ln (∆/ρ) + bt) .

We can clear bt to obtain a mapping from the co-state to the control:

bt =
λπt κ

(
1 + θΨT

)
+ α (b0 + ρt− x0) + θ ((ln (∆/ρ)) /T − ρ)Υ (T ) /T

(α+ θΥ(T ) /T 2)
.
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Thus, the optimal path of debt satisfies:
bt = β0 + β1t+ βλλ

π
t .

where:

β0 =
α (b0 − x0) + θ ((ln (∆/ρ)) /T − ρ)Υ (T ) /T

(α+ θΥ(T ) /T 2)

β1 =
αρ

α+ θΥ(T ) /T 2

βλ = κ
1 + θΨT

α+ θΥ(T ) /T 2
.

With this representation, we obtain a simple solution to the path of inflation and the co-state as a system:

λ̇πt = − (θ + ρ)πt − λπt

and

π̇t = (θ + ρ)πt − κ (x0 + β0 + β1t+ βλλ
π
t − b0 − ρt)− θκΨT (Tρ− ln (∆/ρ) + β0 + β1t+ βλλ

π
t ) .

Grouping terms:

π̇t = (θ + ρ)πt−κ
(
1 + θΨT

)
βλλ

π
t −κ

(
x0 − b0 +

(
1 + θΨT

)
β0 + θΨT (Tρ− ln (∆/ρ))

)
−κ
((
1 + θΨT

)
β1 − ρ

)
t.

Hamiltonian System. Thus, the planner’s problem is equivalent to choosing a path for government debt.
This system implies that we can solve the problem as a simple Hamiltonian with one control, one state. The
complication is that the Hamiltonian is no longer stationary. Still we can set it up in present value:

H ≡ 1

2

(
π2
t + α (x0 + bt − b0 − ρt)

2
+ θ (bt − bn)

2
Υ(T )

)
+ λπt

(
(θ + ρ)πt − κ (x0 + bt − b0 − ρt)− θκΨT (bt − bn)

)
.

The solution to the Hamiltonian system is characterized through the following proposition:

Lemma 7. The optimal path for inflation satisfies the following optimization system:

λ̇πt = − (θ + ρ)πt − λπt

π̇t = (θ + ρ)πt − γπλπt − γ0 − γ1t.

Notice that the equation for inflation inherits a linear trend. Thus, inflation will grow at a constant rate.
Unlike the Taylor rule, which is successful at taming inflation, at the expense of an exploding debt path, the
optimal path of inflation weights the cost of inflation against the cost of exploding debt and an ever growing
output gap.

Proof of Lemma 5.

Proof. Part 1.
In the first part of the proof, we show that optimal inflation is affine in time.
Taking time derivatives to the equation for co-state, we obtain:

λ̈πt = − (θ + ρ) π̇t − λ̇πt
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and from there, we can replace the Phillips curve:

λ̈πt = − (θ + ρ) ((θ + ρ)πt − γπλπt − γ0 − γ1t)− λ̇πt .

Inflation appears in levels, but we clear it using the equation for the co-state:

λ̈πt = − (θ + ρ)
(
λ̇πt − λπt − γπλπt − γ0 − γ1t

)
− λ̇πt .

Thus, we obtain:
λ̈πt = − (θ + ρ+ 1) λ̇πt + (θ + ρ) (1 + γπ)λπt + (θ + ρ) (γ0 + γ1t) .

The roots for the co-state equation are:

β1,2 =
1

2

[
(θ + ρ+ 1)±

√
(θ + ρ+ 1)

2 − 4 (θ + ρ) (1 + γπ)

]
.

The particular solution is:
λpt = C0 + C1t

In which case:
C1 = − γ1

1 + γπ

− (θ + ρ+ 1)C1 + (1 + γπ) (θ + ρ)C0 = − (θ + ρ) γ0

Thus:

C0 = −
(

γ0
1 + γπ

+
γ1

1 + γπ
(θ + ρ+ 1)

(1 + γπ) (θ + ρ)

)
The particular solution fluctuates around:

λpt = −
(

γ0
(1 + γπ)

+
γ1

1 + γπ
(θ + ρ+ 1)

(1 + γπ) (θ + ρ)
+

γ1
1 + γπ

t

)
.

The general solution satisfies:
λct = k0 exp (β1t) + k1 exp (β2t) .

If we work with non-imaginary roots, both roots are explosive. In that case, we have that: {k0, k1} = 0.
The solution is thus given by:

λπt = λpt .

Hence:
C1 = − (θ + ρ)πt − (C0 + C1t)

Thus:
πt = − (C1 + C0)− C1t

Thus:

πt =
1

1 + γπ

(
γ0 + γ1

(
θ + ρ+ 1

(1 + γπ) (θ + ρ)
+ 1

))
+

γ1
1 + γπ

t.

Then, the path of the output gap satisfies:

κxt = (θ + ρ)πt − π̇ − θπJt = (θ + ρ)πt − π̇ − θπJt

From here we derive the real interest rate and the path for debt.
Part 2.
After discarding the explosive roots, we modify use the affine structure to relate to the coefficients.
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Next,

Solution. We expand the quadratic terms in the objective function after we replace the affine structure of the
solution. We obtain the following objective function:

P = min
{π0,r∗}

∫ ∞

0

exp (− (θ + ρ) t)
(
(cπ0 + cπ1 t)

2
+ α (cx0 + cx1t)

2
+ β

(
cb0 + cb1t

)2)
dt

where:
cb0 ≡ b0 − bn

β ≡ θΥT

We expand the quadratic term:

min
{π0,r∗}

∫ ∞

0

exp (− (θ + ρ) t)
(
(cπ0 )

2
+ 2cπ0 c

π
1 t+ (cπ1 )

2
t2 + α

(
(cx0)

2
+ 2cx0c

x
1t+ (cx1)

2
t2
)
+ β

((
cb0
)2

+ 2cb0c
b
1t+

(
cb1
)2
t2
))

dt

Following the previous Lemma, we have the following set of constraints among the coefficients.
First, we use the following identities:

cx1 = r∗

and
cπ0 = π0.

I) From the Euler equation:
ẋ = r∗ − ρ = cb1 − ρ,

and thus:
cb1 = cx1 − ρ = r∗.

II) Using the linear trend components of the Phillips curve:

(θ + ρ) cπ1 =
(
κcx1 + θκΨT cb1

)
,

thus, regrouping and using the Euler equation relationship (xxx):

cπ1 = κ
1 + θΨT

θ + ρ
r∗ − κ

ρ

θ + ρ
.

Then, the linear terms are related via:

(θ + ρ) cπ0 = κcx0 + cπ1 + θκΨT cb0.

Clearing cx0 yields:

cx0 =
(θ + ρ)

κ
π0 −

1

κ
cπ1 − θΨT cb0.

Substituting the expression for cπ1 we obtain:

cx0 =
θ + ρ

κ
π0 −

1 + θΨT

θ + ρ
r∗ +

ρ

θ + ρ
− θΨT cb0

56



Thus, we arrive at:

cx0 =
θ + ρ

κ
π0 −

1 + θΨT

θ + ρ
r∗ +

ρ

θ + ρ
− θΨT cb0.

cb0 = b0 − bb

cb1 = r∗

cπ0 = π0

cπ1 = κ
1 + θΨT

θ + ρ
r∗ − κ

ρ

θ + ρ
.

After the corresponding substitutions, we arrive at a quadratic system.

• Argue that since cx0 increasing in cπ0 , ideally, cπ0 is minimized provided that cx0 > 0, which must be
verified. This assumption reduces the calculation burden.

When cπ0 = 0, the simplified system is:

min
{r∗}

∫ ∞

0

exp (− (θ + ρ) t)
(
(cπ1 )

2
t2 + α

(
(cx0)

2
+ 2cx0c

x
1t+ (cx1)

2
t2
)
+ β

((
cb0
)2

+ 2cb0c
b
1t+

(
cb1
)2
t2
))

dt

subject to:

cx0 = −1 + θΨT

θ + ρ
r∗ +

ρ

θ + ρ
− θΨT cb0.

cb0 = b0 − bb

cb1 = r∗

cπ1 = κ
1 + θΨT

θ + ρ
r∗ − κ

ρ

θ + ρ
.

Thus, after the corresponding substitutions we arrive at:

1

2
min
{r∗}

∫ ∞

0

exp (− (θ + ρ) t)
(
(cπ1 )

2
t2 + α

(
(cx0)

2
+ 2cx0c

x
1t+ (cx1)

2
t2
)
+ β

((
cb0
)2

+ 2cb0c
b
1t+

(
cb1
)2
t2
))

dt

Let
Lθ+ρ2 ≡

∫ ∞

0

exp (− (θ + ρ) t) t2dt

Lθ+ρ1 ≡
∫ ∞

0

exp (− (θ + ρ) t) tdt

Lθ+ρ0 ≡
∫ ∞

0

exp (− (θ + ρ) t) dt

passing integrals we obtain:

1

2
β
(
cb0
)2 Lθ+ρ0 +min

{r∗}

1

2

(
(cπ1 )

2
+ α (cx1)

2
+ β

(
cb1
)2)L2 +

(
αcx0c

x
1 + βcb0c

b
1

)
L1 +

α

2
(cx0)

2 L0

subject to:

cx0 = −1 + θΨT

θ + ρ
r∗ +

ρ

θ + ρ
− θΨT cb0.

cb0 = b0 − bb
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cb1 = r∗

cπ1 = κ
1 + θΨT

θ + ρ
r∗ − κ

ρ

θ + ρ
.

Using our the coefficients:

min
{r∗}

1

2

((
κ
1 + θΨT

θ + ρ
r∗ − κ

ρ

θ + ρ

)2

+ α (r∗ − ρ)
2
+ βr∗2

)
L2+

(
α

(
−1 + θΨT

θ + ρ
r∗ +

ρ

θ + ρ
− θΨT cb0

)
(r∗ − ρ) + βcb0r

∗
)
L1+

α

2

(
1 + θΨT

θ + ρ
r∗ − ρ

θ + ρ
+ θΨT cb0

)2

L0.

Next, we take first-order conditions:((
κ
1 + θΨT

θ + ρ
r∗ − κ

ρ

θ + ρ

)
1 + θΨT

θ + ρ
κ+ α (r∗ − ρ) + βr∗

)
L2+

(
α

(
−2

1 + θΨT

θ + ρ
r∗ − θΨT cb0 +

2 + θΨT

θ + ρ
ρ

)
+ βcb0

)
L1+α

(
1 + θΨT

θ + ρ
r∗ − ρ

θ + ρ
+ θΨT cb0

)
1 + θΨT

θ + ρ
L0 = 0.

Next, we collect the terms associated with r∗. We obtain:(((
κ
1 + θΨT

θ + ρ

)2

+ α+ β

)
L2 − 2α

(
1 + θΨT

θ + ρ

)
L1 + α

(
1 + θΨT

θ + ρ

)2

L0

)
r∗ =

(
κ2

ρ

θ + ρ

1 + θΨT

θ + ρ
+ αρ

)
L2+

(
α

(
θΨT cb0 −

2 + θΨT

θ + ρ
ρ

)
− βcb0

)
L1+α

(
ρ

θ + ρ
− θΨT cb0

)
1 + θΨT

θ + ρ
L0

Thus, re-arraning terms, we obtain:

r∗ =

(
κ ρ
θ+ρ

1+θΨT

θ+ρ κ+ αρ
)
L2 +

(
α
(
θΨT cb0 − 2+θΨT

θ+ρ ρ
)
− βcb0

)
L1 + α

(
ρ
θ+ρ − θΨT cb0

)
1+θΨT

θ+ρ L0((
κ 1+θΨT

θ+ρ

)2
+ α+ β

)
L2 − 2α

(
1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0

.

Then,

r∗ = ρ+

(
κ ρ
θ+ρ

1+θΨT

θ+ρ κ+ αρ
)
L2 +

(
α
(
θΨT cb0 − 2+θΨT

θ+ρ ρ
)
− βcb0

)
L1 + α

(
ρ
θ+ρ − θΨT cb0

)
1+θΨT

θ+ρ L0((
κ 1+θΨT

θ+ρ

)2
+ α+ β

)
L2 − 2α

(
1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0

− ρ

= ρ+
−ρ
(
κ2 θΨ

T

θ+ρ
1+θΨT

θ+ρ + β
)
L2 +

(
α
(
θΨT cb0 +

θΨT

θ+ρ ρ
)
− βcb0

)
L1 +

(
α −ρ
θ+ρ − αρ 1+θΨT

θ+ρ − αθΨT cb0

)
1+θΨT

θ+ρ L0((
κ 1+θΨT

θ+ρ

)2
+ α+ β

)
L2 − 2α

(
1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0

= ρ+
−ρ
(
κ2 θΨ

T

θ+ρ
1+θΨT

θ+ρ + β
)
L2 +

(
α θΨ

T

θ+ρ ρ+
(
αθΨT − β

)
cb0

)
L1 + α

(
−2ρ−ρθΨT

θ+ρ − θΨT cb0

)
1+θΨT

θ+ρ L0((
κ 1+θΨT

θ+ρ

)2
+ α+ β

)
L2 − 2α

(
1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0

= ρ

1−

(
κ2 θΨ

T

θ+ρ
1+θΨT

θ+ρ + β
)
L2 + α

(
2+θΨT

θ+ρ
1+θΨT

θ+ρ L1 − θΨTL1

)
1
θ+ρ +

((
β − αθΨT

)
L1 + αθΨT 1+θΨT

θ+ρ L0

)
cb0
ρ((

κ 1+θΨT

θ+ρ

)2
+ α+ β

)
L2 − 2α

(
1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0



= ρ

1−

(
κ2 θΨ

T

θ+ρ
1+θΨT

θ+ρ + β
)
L2 + α

((
2 +

(
θΨT

)2) 1+θΨT

θ+ρ L0 − θΨTL1

)
1
θ+ρ +

((
β − αθΨT

)
L1 + αθΨT 1+θΨT

θ+ρ L0

)
cb0
ρ((

κ 1+θΨT

θ+ρ

)2
+ α+ β

)
L2 − 2α

(
1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0

 .
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Let θ = 0, then, using that β = 0, we obtain:

r∗ = ρ

1−

(
κ2

ρ2

)
L2 +

2α
ρ2 L0((

κ2

ρ2

)
+ α

)
L2 − 2αρL1 + α

(
1
ρ

)2
L0

 = ρ

1− 1

1/ρ

 (
κ2/ρ2

)
L2 + 2αL0/ρ((

κ2

ρ

)
+ αρ

)
L2 − 2αL1 + α

(
1
ρ

)
L0

 = ρ.

This verifies the standard solution that there is no trend in inflation.
Consider no weight on the output gap, α = 0. Then:

r∗ =

(
κ ρ
θ+ρ

1+θΨT

θ+ρ κ
)
L2 − βcb0L1((

κ 1+θΨT

θ+ρ

)2
+ β

)
L2

.

Next, consider κ = 0 as if the Phillips curve is flat:

r∗ =
αρL2 +

(
α
((
θΨT cb0 −

ρ
θ+ρ

)
− 1+θΨT

θ+ρ ρ
)
− βcb0

)
L1 + α

(
ρ
θ+ρ − θΨT cb0

)
1+θΨT

θ+ρ L0

(α+ β)L2 − 2α
(

1+θΨT

θ+ρ

)
L1 + α

(
1+θΨT

θ+ρ

)2
L0

.

E. Optimal policy

Value of Phase II. The value of Phase II, conditional on starting with debt level b∗0, is given by

PII(b∗0) =
∫ T∗

0

e−ρt(αx∗2t + βπ∗2
t )dt. (62)

Using the fact that x∗t = (b∗0 − bn)
(
1− t

T∗

)
and π∗

t = κΦ(b∗0 − bn)
(
1− t

T∗

)
, we obtain

PII(b∗0) = Υ(b∗0 − bn)2, (63)

where Υ ≡
[
α+ β(κΦ)2

] ∫ T∗

0
e−ρt

(
1− t

T∗

)2
dt.

The optimal policy problem. The planner’s objective can be written as

P = −1

2
E
[∫ τ

0

e−ρt
(
αx2t + βπ2

t

)
dt+ e−ρτ P̃τ

]
,

where τ denotes the random time at which the economy switches to either Phase II or the steady state, and P̃t
denotes the value after the economy switches to either state. If the economy goes to steady state, then P̃τ = 0,
the value in steady state, and if the economy’s go to Phase II, then P̃τ = PII(bτ ). The density of τ is θe−θτ and,
conditional on τ , the economy switches to Phase II with probability θ∗

θ and to steady state with the remaining
probability (see e.g. Cox and Miller (1977) for a derivation). We can then write the expression above as follows

P = −1

2

∫ ∞

0

θe−θτ
[∫ τ

0

e−ρt
(
αx2t + βπ2

t

)
dt+ e−ρτ

θ∗

θ
PII(bτ )

]
dτ

= −1

2

∫ ∞

0

e−(ρ+θ)t
[
αx2t + βπ2

t + θ∗Υ(bt − bn)2
]
dt.
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The planner faces the following implementability constraints:

π̇t = (ρ+ θf )πt − κxt − θ∗fκΦ(bt − bn), ẋt = rt − ρ+ θhxt − θ∗h(bt − bn), ḃt = rt − ρ+ ψt, (64)

given the initial condition b0.
We consider first the case without households’ expectation effects: θh = θ∗h = 0. We further assume that

θ = θf and θ∗ = θ∗f , so the planner’s beliefs coincide with the firm’s beliefs. In this case, the output gap is
given by xt − x0 = bt − b0 − ψ̂t, where ψ̂t =

∫ t
0
ψsds.

We can then write the planner’s problem as follows:

max
{[πt,bt,xt,rt]∞0 }

−1

2

∫ ∞

0

e−(ρ+θ)t
[
αx2t + βπ2

t + θ∗Υ(bt − bn)2
]
dt, (65)

subject to

π̇t = (ρ+ θ)πt − κxt − θ∗κΦ(bt − bn) (66)

ḃt = rt − ρ+ ψt (67)
ẋt = rt − ρ, (68)

given b0.

Optimality conditions. The Hamiltonian to this problem is given by

H = −1

2

[
αx2t + βπ2

t + θ∗Υ(bt − bn)2
]
+ µπ,t [(ρ+ θ)πt − κxt − θ∗κΦ(bt − bn)] + µb,t [rt − ρ+ ψt] + µx,t[rt − ρ],

(69)
The dynamics of the co-state on inflation is given by

µ̇π,t − (ρ+ θ)µπ,t = βπt − µπ,t(ρ+ θ), (70)

given the initial condition µπ,0 = 0, as π0 is free to jump.
The dynamics of the co-state on government debt is given by

µ̇b,t − (ρ+ θ)µb,t = θ∗Υ(bt − bn) + µπ,tθ
∗κΦ. (71)

The dynamics of the co-state on the output gap is given by

µ̇x,t − (ρ+ θ)µx,t = αxt + µπ,tκ, (72)

given the initial condition µx,0 = 0, as x0 is free to jump.
The optimality condition for the real interest rate is

µb,t + µx,t = 0. (73)

Real and nominal rates. Combining the optimality condition for debt and output gap, we obtain

θ∗Υ(bt − bn) + αxt = −µπ,tκ(1 + θ∗Φ). (74)
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Using the fact that µπ,0 = 0, we obtain

x0 = −θ
∗Υ

α
(b0 − bn). (75)

Hence, it is optimal to have a negative output gap in period 0 to compensate for the effects of the
initial high value of debt, b0 − bn.

Differentiating the expression above with respect to time, we obtain

µ̇π,t = − θ∗Υ+ α

κ(1 + θ∗Φ)
ḃt +

αψt
κ(1 + θ∗Φ)

. (76)

Combining the previous expression with the dynamics for µπ,t, we obtain

− θ∗Υ+ α

κ(1 + θ∗Φ)
ḃt +

αψt
κ(1 + θ∗Φ)

= βπt. (77)

Rearranging the expression above, we obtain

ḃt = −βκ(1 + θ∗Φ)

θ∗Υ+ α
πt +

α

θ∗Υ+ α
ψt = rt − ρ+ ψt. (78)

The real rate is given by

rt − ρ = −βκ(1 + θ∗Φ)

θ∗Υ+ α
πt −

θ∗Υ

θ∗Υ+ α
ψt, (79)

and the nominal interest rate is given by

it = ρ+

[
1− β

κ(1 + θ∗Φ)

θ∗Υ+ α

]
πt −

θ∗Υ

θ∗Υ+ α
ψt. (80)

Dynamics under the optimal policy. Using the expression for xt = x0 + bt − b0 − ψ̂t, we can write
a dynamic system for πt and btπ̇t

ḃt

 =

 ρ+ θ −κ(1 + θ∗Φ)

−βκ(1+θ∗Φ)
θ∗Υ+α 0

 πt

bt − bn

+

κ(ψ̂t + b0 − bn − x0)

α
θ∗Υ+αψt

 . (81)

As b0 is given and π0 can jump, there is a unique bounded solution to the system above if the sys-
tem has a positive eigenvalue and a negative eigenvalue. The eigenvalues of the system satisfy the
condition

(ρ+ θ − λ)(−λ)− β
κ2(1 + θ∗Φ)2

θ∗Υ+ α
= 0 ⇒ λ2 − [ρ+ θ]λ− β

κ2(1 + θ∗Φ)2

θ∗Υ+ α
= 0.
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Denote the eigenvalues of the system by λ > 0 and λ < 0. For the case θf = θ, the eigenvalues are
given by

λ =
ρ+ θ +

√
(ρ+ θ)2 + 4β κ

2(1+θ∗Φ)2

θ∗Υ+α

2
, λ =

ρ+ θ −
√

(ρ+ θ)2 + 4β κ
2(1+θ∗Φ)2

θ∗Υ+α

2
. (82)

The matrix of eigenvectors and its inverse are given by

V =

κ(1+θ∗Φ)
λ

κ(1+θ∗Φ)

λ

1 1

 , V −1 =
λ|λ|

(λ− λ)κ(1 + θ∗Φ)

−1 κ(1+θ∗Φ)

λ

1 κ(1+θ∗Φ)
|λ|

 . (83)

Let Zt = [πt, bt]
′ denote the vector of endogenous variables, A the matrix of coefficients, and Ut

the vector of coefficients. We can then write the dynamic system as Żt = AZt + Ut. We can write the
matrix of coefficients as A = V ΛV −1, where Λ is a diagonal matrix with the eigenvalues. Using the
matrix eigendecomposition, we can decouple the system using the transformation: zt ≡ V −1Zt and
ut ≡ V −1Ut. This gives us the system of decoupled differential equations:

ż1,t = λz1,t + u1,t, ż2,t = λz2,t + u2,t. (84)

Integrating the first equation forward and the second backwards, we obtain

z1,t = −
∫ ∞

t
e−λ(s−t)u1,sds, z2,t = eλtz2,0 +

∫ t

0
eλ(t−s)u2,sds. (85)

Rotating the system back to its original coordinates, we obtain

πt =
κ(1 + θ∗Φ)

|λ|

∫ ∞

t
e−λ(s−t)u1,sds+

κ(1 + θ∗Φ)

λ

[
eλtz2,0 +

∫ t

0
eλ(t−s)u2,sds

]
, (86)

and

bt − bn = −
∫ ∞

t
e−λ(s−t)u1,sds+ eλtz2,0 +

∫ t

0
eλ(t−s)u2,sds. (87)

The shocks u1,t and u2,t are given by

u1,t =
|λ|
λ− λ

[
α

θ∗Υ+ α
ψt −

λ

(1 + θ∗Φ)
(ψ̂t + b0 − bn − x0)

]
(88)

u2,t =
λ

λ− λ

[
α

θ∗Υ+ α
ψt +

|λ|
(1 + θ∗Φ)

(ψ̂t + b0 − bn − x0)

]
, (89)

where ψ̂t = 1−e−θψt
θψ

ψ0 if θψ > 0 and ψ̂t = ψ0t if θψ = 0.
The forward integral of u1,t is given by

∫ ∞

t
e−λ(s−t)u1,sds =

|λ|
λ− λ

( α

θ∗Υ+ α
+

λ

(1 + θ∗Φ)

1

θψ

)
ψt

λ+ θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + θ∗Φ

 (90)
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The backward integral of u2,t is given by∫ t

0

eλ(t−s)u2,sds =
λ

λ− λ

[(
α

θ∗Υ+ α
− |λ|

(1 + θ∗Φ)

1

θψ

)
eλt − e−θψt

θψ + λ
ψ0 +

|λ|
(1 + θ∗Φ)

(
ψ0

θψ
+ b0 − bn − x0)

1− eλt

|λ|

]
(91)

From the expression for z1,0, we obtain

π0 =
κ(1 + θ∗Φ)

λ

[
(b0 − bn) +

λ− λ

|λ|

∫ ∞

0
e−λtu1,tdt

]

=
κ(1 + θ∗Φ)

λ

(b0 − bn) +

(
α

θ∗Υ+ α
+

λ

(1 + θ∗Φ)

1

θψ

)
ψ0

λ+ θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + θ∗Φ

 . (92)

We can then write initial inflation as follows:

π0 = κθ∗
αΦ−Υ

αλ

[
b0 − bn +

α

θ∗Υ+ α

ψ0

λ+ θψ

]
.

The initial value for z2,t is given by

z2,0 =
λ

λ− λ

[
|λ|

κ(1 + θ∗Φ)
π0 + b0 − bn

]
.

Inflation is then given by

πt =
κ(1 + θ∗Φ)

λ− λ

( α

θ∗Υ+ α
+

λ

(1 + θ∗Φ)

1

θψ

)
ψt

λ+ θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + θ∗Φ

 (93)

+
κ(1 + θ∗Φ)

λ− λ

[
eλt
[

|λ|
κ(1 + θ∗Φ)

π0 + b0 − bn
]
+

(
α

θ∗Υ+ α
− |λ|

(1 + θ∗Φ)

1

θψ

)
eλt − e−θψt

θψ + λ
ψ0

]
(94)

+
κ(1 + θ∗Φ)

λ− λ

[
1− eλt

(1 + θ∗Φ)
(
ψ0

θψ
+ b0 − bn − x0)

]
. (95)

Rearranging the expression above, we obtain

πt = κθ∗
αΦ−Υ

θ∗Υ+ α

eλt − e−θψt

(λ+ θψ)(λ+ θψ)
ψ0 +

κθ∗

λ

αΦ−Υ

θ∗Υ+ α

[
θ∗Υ+ α

α
(b0 − bn) +

ψ0

θψ + λ

]
eλt. (96)

Government debt is given by

bt − bn =
λ

κ(1 + θ∗Φ)
πt −

( α

θ∗Υ+ α
+

λ

(1 + θ∗Φ)

1

θψ

)
ψt

λ+ θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + θ∗Φ

 . (97)
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Plugging the value for πt, we obtain

bt − bn = b0 − bn − θ∗
αΦ−Υ

α(1 + θ∗Φ)
(b0 − bn)(1− eλt)−

(
α

θ∗Υ+ α
− 1

(1 + θ∗Φ)

)
1− e−λt

λ+ θψ

λ

λ+ θψ
ψ0

+

(
α

θ∗Υ+ α
+

λ

(1 + θ∗Φ)

1

θψ

)
1− e−θψt

λ+ θψ
ψ0 +

(
α

θ∗Υ+ α
− 1

(1 + θ∗Φ)

)
1− e−θψt

λ+ θψ

λ

λ+ θψ
ψ0

(98)

Rearranging the expression above, we obtain

bt − bn = b0 − bn − θ∗
αΦ−Υ

α(1 + θ∗Φ)

[
(b0 − bn) +

λ

(λ+ θψ)(λ+ θψ)

ψ0

θ∗Υ+ α

]
(1− eλt)

+

(
α(λ+ λ+ θψ)

θ∗Υ+ α
+

λλ

(1 + θ∗Φ)

1

θψ

)
1− e−θψt

(λ+ θψ)(λ+ θψ)
ψ0. (99)

The long-run level of debt in Phase I is given by

blrt − bn =
α+ θ∗Υ

α(1 + θ∗Φ)
(b0 − bn) + . . . (100)

E.1 The general case

We consider next where we allow for households’ expectation effects. Moreover, we allow the plan-
ner’s beliefs to differ from the beliefs of households or firms. In this case, the planner’s problem is
given by:

max
{[πt,bt,xt,rt]∞0 }

−1

2

∫ ∞

t0

e−(ρ+θ)(t−t0) [αx2t + βπ2t + θ∗Υ(bt − bn)2
]
dt, (101)

subject to

π̇t = (ρ+ θf )πt − κxt − θ∗fκΦ(bt − bn) (102)

ḃt = rt − ρ+ ψt (103)
ẋt = rt − ρ+ θhxt − θ∗h(bt − bn), (104)

given bt0 .

Optimality conditions. The Hamiltonian to this problem is given by

H = −1

2

[
αx2t + βπ2

t + θ∗Υ(bt − bn)2
]
+ µπ,t

[
(ρ+ θf )πt − κxt − θ∗fκΦ(bt − bn)

]
(105)

+ µb,t [rt − ρ+ ψt] + µx,t[rt − ρ+ θhxt − θ∗h(bt − bn)], (106)

The dynamics of the co-state on inflation is given by

µ̇π,t − (ρ+ θ)µπ,t = βπt − µπ,t(ρ+ θf ), (107)
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given the initial condition µπ,0 = 0, as π0 is free to jump.
The dynamics of the co-state on government debt is given by

µ̇b,t − (ρ+ θ)µb,t = θ∗Υ(bt − bn) + µπ,tθ
∗
fκΦ+ µx,tθ

∗
h. (108)

The dynamics of the co-state on the output gap is given by

µ̇x,t − (ρ+ θ)µx,t = αxt + µπ,tκ− µx,tθh, (109)

given the initial condition µx,0 = 0, as x0 is free to jump.
The optimality condition for the real interest rate is

µb,t + µx,t = 0. (110)

Real and nominal rates. Combining the optimality condition for debt and output gap, we obtain

θ∗Υ(bt − bn) + αxt = −µπ,tκ(1 + θ∗Φ) + µx,tθh. (111)

Using the fact that µπ,0 = 0 and µx,0 = 0, we obtain

x0 = −θ
∗Υ

α
(b0 − bn). (112)

Hence, it is optimal to have a negative output gap in period 0 to compensate for the effects of the
initial high value of debt, b0 − bn.

Differentiating the expression above with respect to time, we obtain

µ̇π,t = − θ∗Υ+ α

κ(1 + θ∗Φ)
ḃt +

αψt
κ(1 + θ∗Φ)

. (113)

Combining the previous expression with the dynamics for µπ,t, we obtain

− θ∗Υ+ α

κ(1 + θ∗Φ)
ḃt +

αψt
κ(1 + θ∗Φ)

= βπt. (114)

Rearranging the expression above, we obtain

ḃt = −βκ(1 + θ∗Φ)

θ∗Υ+ α
πt +

α

θ∗Υ+ α
ψt = rt − ρ+ ψt. (115)

.
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